Handbook of Polymer Crystallization


Book Description

Polymeric crystals are more complex in nature than other materials' crystal structures due to significant structural disorder present. The only comprehensive reference on polymer crystallization, Handbook of Polymer Crystallization provides readers with a broad, in-depth guide on the subject, covering the numerous problems encountered during crystallization as well as solutions to resolve those problems to achieve the desired result. Edited by leading authorities in the field, topics explored include neat polymers, heterogeneous systems, polymer blends, polymer composites orientation induced crystallization, crystallization in nanocomposites, and crystallization in complex thermal processing conditions.




Crystallization in Multiphase Polymer Systems


Book Description

Crystallization in Multiphase Polymer Systems is the first book that explains in depth the crystallization behavior of multiphase polymer systems. Polymeric structures are more complex in nature than other material structures due to their significant structural disorder. Most of the polymers used today are semicrystalline, and the subject of crystallization is still one of the major issues relating to the performance of semicrystalline polymers in the modern polymer industry. The study of the crystallization processes, crystalline morphologies and other phase transitions is of great significance for the understanding the structure-property relationships of these systems. Crystallization in block copolymers, miscible blends, immiscible blends, and polymer composites and nanocomposites is thoroughly discussed and represents the core coverage of this book. The book critically analyzes the kinetics of nucleation and growth process of the crystalline phases in multi-component polymer systems in different length scales, from macro to nanoscale. Various experimental techniques used for the characterization of polymer crystallization process are discussed. Written by experts in the field of polymer crystallization, this book is a unique source and enables professionals and students to understand crystallization behavior in multiphase polymer systems such as block copolymers, polymer blends, composites and nanocomposites. - Covers crystallization of multiphase polymer systems, including copolymers, blends and nanocomposites - Features comprehensive, detailed information about the basic research, practical applications and new developments for these polymeric materials - Analyzes the kinetics of nucleation and growth process of the crystalline phases in multi-component polymer systems in different length scales, from macro to nanoscale




Polymer Crystallization


Book Description

Table of contents




Crystallization of Polymers: Volume 1, Equilibrium Concepts


Book Description

First published in 2002, from an original 1964 edition, in the Crystallization of Polymers, 2nd edition Leo Mandelkern provides a self-contained treatment of polymer crystallization. All classes of macromolecules are included and the approach is through the basic disciplines of chemistry and physics. The book discusses the thermodynamics and physical properties that accompany the morphological and structural changes that occur when a collection of molecules of very high molecular weight are transformed from one state to another. Volume 1 is a presentation of the equilibrium concepts that serve as a basis for the subsequent volumes. In this volume the author shows that knowledge of the equilibrium requirements is vital to understanding all aspects of the polymer crystallization process, and the final state that eventually evolves. This book will be an invaluable reference work for all chemists, physicists and materials scientists who work in the area of polymer crystallization.




Polymer Crystallization I


Book Description

The series Advances in Polymer Science presents critical reviews of the present and future trends in polymer and biopolymer science. It covers all areas of research in polymer and biopolymer science including chemistry, physical chemistry, physics, material science. The thematic volumes are addressed to scientists, whether at universities or in industry, who wish to keep abreast of the important advances in the covered topics. Advances in Polymer Science enjoys a longstanding tradition and good reputation in its community. Each volume is dedicated to a current topic, and each review critically surveys one aspect of that topic, to place it within the context of the volume. The volumes typically summarize the significant developments of the last 5 to 10 years and discuss them critically, presenting selected examples, explaining and illustrating the important principles, and bringing together many important references of primary literature. On that basis, future research directions in the area can be discussed. Advances in Polymer Science volumes thus are important references for every polymer scientist, as well as for other scientists interested in polymer science - as an introduction to a neighboring field, or as a compilation of detailed information for the specialist. Review articles for the individual volumes are invited by the volume editors. Single contributions can be specially commissioned. Readership: Polymer scientists, or scientists in related fields interested in polymer and biopolymer science, at universities or in industry, graduate students




Polymer Morphology


Book Description

With a focus on structure-property relationships, this book describes how polymer morphology affects properties and how scientists can modify them. The book covers structure development, theory, simulation, and processing; and discusses a broad range of techniques and methods. • Provides an up-to-date, comprehensive introduction to the principles and practices of polymer morphology • Illustrates major structure types, such as semicrystalline morphology, surface-induced polymer crystallization, phase separation, self-assembly, deformation, and surface topography • Covers a variety of polymers, such as homopolymers, block copolymers, polymer thin films, polymer blends, and polymer nanocomposites • Discusses a broad range of advanced and novel techniques and methods, like x-ray diffraction, thermal analysis, and electron microscopy and their applications in the morphology of polymer materials




Polymer-modified Liquid Crystals


Book Description

Describing all aspects of polymer-dispersed and polymer-stabilized liquid crystals, this book is a must-have resource for practitioners in the area.




Crystallization Modalities in Polymer Melt Processing


Book Description

Structure formation in crystallizing polymers, as occurring during processing, has not been treated so far in a coherent form. This fact explains, why this monograph is written as the ?rst book devoted to this subject. A quarter of a century ago the underdevelopment of this subject was obvious. Trial and error dominated. In fact, other apposite subjects as polymer melt rheology or heat transfer, had reached high levels. A great number of books has been devoted to them. Mold ?lling of amorphous polymers and the solidi?cation of these polymers by vitri?cation can nowadays be simulated numerically with a high degree of accuracy. In the solidi?ed sample even residual stresses and corresponding birefringence effects can accurately be 1 calculated . However, semicrystalline polymers, which form the majority of industrial po- mers, have been excluded from these considerations for good reasons. In fact, great uncertainties existed about the formation of quality determining crystalline str- tures. In particular, polyole?ns suffered from this shortcoming. In 1983 this fact instigated the polymer research group at the Johannes Kepler University in Linz to start with pertinent activities. The urgency of this kind of studies becomes evident, if advantages and hitches of these polymers are considered. 1. Versatility of processing: Injection molding into a great variety of shapes and sizes, from thin walled beakers to garden chairs, not to forget pipe and pro?le extrusion, cable coating, ?ber spinning, ?lm blowing. 2. Product qualities: Ductility, low density, good electric insulation, corrosion resistance, surface quality.




Liquid Crystal Polymers: From Structures to Applications


Book Description

The subject of liquid crystals and their use in electronic displays and in non-linear optical systems has become of tremendous importance during the last decade; and the incorporation of liquid crystal units into polymeric materials has led to a group of new materials with diverse properties. Some of these properties have been utilized in new products and some have yet to be used. Much published work has appeared that deals with specific materials or particular applications, and it was felt that a book was needed to examine and explain the underlying principles governing the diverse properties of these liquid crystal polymers, LCPs. The current work describes the diverse nature of LCPs, their synthesis, characterization, properties and finally their applications. It describes the manner in which liquid crystallinity or mesomorphism occurs in small molecules, monomer liquid crystals and polymer liquid crystals. Chapter 1 gives a classification of the various ways in which the meso gens may be connected to the polymer chains. Currently, the bulk of LCP material is based on main chain or longitudinal LCPs for use in engineering applications. The side chain or comb polymers are intended for use in electronics and opto-electronic systems and as surfactants. Many other variants and possibilities exist but their properties have not yet been fully studied or used. In this respect it is hoped that the current work will indicate future possibilities as well as discussing current opinion. v Preface vi Chapters 2 and 3 describe methods of characterizing the mesophases.




Crystallization as Studied by Broadband Dielectric Spectroscopy


Book Description

This book presents new approaches that offer a better characterization of the interrelationship between crystalline and amorphous phases. In recent years, the use of dielectric spectroscopy has significantly improved our understanding of crystallization. The combination of modern scattering methods, using either synchrotron light or neutrons and infrared spectroscopy with dielectrics, is now helping to reveal modifications of both crystalline and amorphous phases. In turn, this yields insights into the underlying physics of the crystallization process in various materials, e.g. polymers, liquid crystals and diverse liquids. The book offers an excellent introduction to a valuable application of dielectric spectroscopy, and a helpful guide for every scientist who wants to study crystallization processes by means of dielectric spectroscopy.




Recent Books