Polymer Dielectrics


Book Description

The book gives the reader an overview on electrical properties and applications such as converter transformer, transistor, and energy storage. Besides, this book also presents some recent researches on typical polymer material such as silicon rubber and LDPE, which may provide some clues of advanced polymer properties for both engineers and researches. The author has been a professor at the Department of Electrical Engineering, School of Electrical Engineering and Automation, Tianjin University, China, since 2002. He has been active in polymer insulation research since the 1990s. He is a member of IEEJ, senior member of CSEE, member at several WG in CIGRE, and associate editor of the IEEE Transactions on Dielectrics and Electrical Insulation.




Dielectric Polymer Nanocomposites


Book Description

Dielectric Polymer Nanocomposites provides the first in-depth discussion of nano-dielectrics, an emerging and fast moving topic in electrical insulation. The text begins with an overview of the background, principles and promise of nanodielectrics, followed by a discussion of the processing of nanocomposites and then proceeds with special considerations of clay based processes, mechanical, thermal and electric properties and surface properties as well as erosion resistance. Carbon nanotubes are discussed as a means of creation of non linear conductivity, the text concludes with a industrial applications perspective.




Dielectric Polymer Materials for High-Density Energy Storage


Book Description

Dielectric Polymer Materials for High-Density Energy Storage begins by introducing the fundamentals and basic theories on the dielectric behavior of material. It then discusses key issues on the design and preparation of dielectric polymer materials with strong energy storage properties, including their characterization, properties and manipulation. The latest methods, techniques and applications are explained in detail regarding this rapidly developing area. The book will support the work of academic researchers and graduate students, as well as engineers and materials scientists working in industrial research and development. In addition, it will be highly valuable to those directly involved in the fabrication of capacitors in industry, and to researchers across the areas of materials science, polymer science, materials chemistry, and nanomaterials. Focuses on how to design and prepare dielectric polymer materials with strong energy storage properties Includes new techniques for adjusting the properties of dielectric polymer materials Presents a thorough review of the state-of-the-art in the field of dielectric polymer materials, providing valuable insights into potential avenues of development




High Temperature Polymer Dielectrics


Book Description

High Temperature Polymer Dielectrics Overview on how to achieve polymer dielectrics at high temperatures, with emphasis on diverse applications in various electrical insulation fields High Temperature Polymer Dielectrics: Fundamentals and Applications in Power Equipment systematically describes the latest research progress surrounding high-temperature polymer dielectric (HTPD) materials and their applications in electrical insulation fields such as high-temperature energy storage capacitors, motors, packaging, printed circuit board, new energy power equipment, and aerospace electrical equipment. The comprehensive text provides a description of the market demand and theoretical research value of HTPDs in electrical equipment and enables readers to improve the performance and design of existing HTPD materials, and to develop efficient new high temperature polymer dielectric materials in general. Specific sample topics covered in High Temperature Polymer Dielectrics include: Thermal and electrical properties of high-temperature polymers, and the excellent thermal stability, mechanical properties, and long service life of polymer dielectrics Why fluorinated polymers are more thermally stable than their corresponding hydrogen-substituted polymers Static Thermomechanical Analysis (TMA), a technique for measuring the functional relationship between the deformation of the materials and the temperature and time under different actions Polyetheretherketone (PEEK), a semi-crystalline polymer material with ether bonds and ketone carbonyl groups in molecular chains Providing a complete overview of the state-of-the-art high temperature polymer dielectrics, with a focus on fundamental background and recent advances, High Temperature Polymer Dielectrics is an essential resource for materials scientists, electrical engineers, polymer chemists, physicists, and professionals working in the chemical industry as a whole.




Polymer Nanocomposites for Dielectrics


Book Description

Covers important dielectric relaxation models that are suitable for the analysis of polymer nanocomposites. Demonstrates nanodispersion and interfacial structures in polymer nanocomposites and their contribution to dielectric properties of polymer nanocomposites. Illustrates the roles of polymer matrices in their polymer nanocomposites in fluoropolymers and their copolymers. Presents the recent progress in novel polymer nanocomposites, such as bio-based nanocomposites as well as hybrid nanocomposites




Percolation, Scaling, and Relaxation in Polymer Dielectrics


Book Description

This book provides a foundational understanding of polymer dielectrics based on percolative composites. It covers the microstructure and physical properties, such as dielectric, electrical, magnetic, and rheological properties, of polymer composites, as well as how these properties can be explained using various theoretical models and spectroscopy techniques, such as dielectric spectroscopy, impedance spectroscopy, and conductivity spectroscopy. The book also discusses non-percolative polymer composites and the suitability of polymer dielectrics for electrical energy storage in various devices. It is intended for graduate students and professionals in fields such as condensed matter physics, applied physics, statistical physics, materials science, polymer science and technology, chemistry, and engineering. It will be particularly useful for physicists, materials scientists, polymer scientists, chemists, engineers, and others interested in the physics and applications of percolative composites based on polymer matrix.




Computational Materials Discovery


Book Description

A unique and timely book providing an overview of both the methodologies and applications of computational materials design.




Dielectric Materials for Capacitive Energy Storage


Book Description

Due to growing energy demands, the development of high-energy storage density dielectric materials for energy storage capacitors has become a top priority. Dielectric Materials for Capacitive Energy Storage focuses on the research and application of dielectric materials for energy storage capacitors. It provides a detailed summary of dielectric properties and polarization mechanism of dielectric materials and analyzes several international cases based on the latest research progress. • Explains advantages and development potential of dielectric capacitors. • Discusses energy storage principles of dielectric materials as well as effects of polarization and breakdown mechanisms on energy storage performance. • Summarizes achievements and progress of inorganic and organic dielectric materials as well as multidimensional composites. • Details applications and features international case studies. • Offers unique insights into existing issues and forecasts for future research priorities. With its summary and large-scale analysis of the fields related to dielectric energy storage, this book will benefit scholars, researchers, and advanced students in materials, electrical, chemical, and other areas of engineering working on capacitors and energy storage.




Electrical Degradation and Breakdown in Polymers


Book Description

The book is in five parts: Part I introduces the physical and chemical structure of polymers and their breakdown; Part II reviews electrical degradation in polymers, and Part III reviews conduction and deterministic breakdown in solids. Part IV discusses the stochastic nature of break-down from empirical and modelling viewpoints, and Part V indicates practical implications and strategies for engineers. Much of the discussion applies to non-crystalline materials generally.