Fundamentals of Polymer Science


Book Description

Now in its second edition, this widely used text provides a unique presentation of today's polymer science. It is both comprehensive and readable. The authors are leading educators in this field with extensive background in industrial and academic polymer research. The text starts with a description of the types of microstructures found in polymer




Polymer Science Study Guide


Book Description




Introduction to Physical Polymer Science


Book Description

An Updated Edition of the Classic Text Polymers constitute the basis for the plastics, rubber, adhesives, fiber, and coating industries. The Fourth Edition of Introduction to Physical Polymer Science acknowledges the industrial success of polymers and the advancements made in the field while continuing to deliver the comprehensive introduction to polymer science that made its predecessors classic texts. The Fourth Edition continues its coverage of amorphous and crystalline materials, glass transitions, rubber elasticity, and mechanical behavior, and offers updated discussions of polymer blends, composites, and interfaces, as well as such basics as molecular weight determination. Thus, interrelationships among molecular structure, morphology, and mechanical behavior of polymers continue to provide much of the value of the book. Newly introduced topics include: Nanocomposites, including carbon nanotubes and exfoliated montmorillonite clays The structure, motions, and functions of DNA and proteins, as well as the interfaces of polymeric biomaterials with living organisms The glass transition behavior of nano-thin plastic films In addition, new sections have been included on fire retardancy, friction and wear, optical tweezers, and more. Introduction to Physical Polymer Science, Fourth Edition provides both an essential introduction to the field as well as an entry point to the latest research and developments in polymer science and engineering, making it an indispensable text for chemistry, chemical engineering, materials science and engineering, and polymer science and engineering students and professionals.




An Introduction to Polymer Science


Book Description

Hans-Georg Elias An Introduction to Polymer Science Polymer science at its best! A completely new approach reflecting the interdisciplinary nature of polymer science! Modern polymer science is firmly rooted not only in the chemistry of macromolecules but also in their pyhsical chemistry and physics. Furthermore, this modern insight provides the reader with information on the three most important uses of synthetic polymers: elastomers, fibers and plastics. Biopolymers are also considered. This book fulfills the need for a volume which introduces polymer science in a straightforward, rigorous, and practical way. It is divided into four parts that cover the chemistry, physical chemistry, physics and technology of polymers. Whenever possible, physical equations are not just presented but are derived step by step from first principles enabling the newcomer to ease smoothy into the subject. The reference to industrial aspects makes this book an indispensable support for both students and professionals.




Seymour/Carraher's Polymer Chemistry


Book Description

This revolutionary and best-selling resource contains more than 200 pages of additional information and expanded discussions on zeolites, bitumen, conducting polymers, polymerization reactors, dendrites, self-assembling nanomaterials, atomic force microscopy, and polymer processing. This exceptional text offers extensive listings of laboratory exercises and demonstrations, web resources, and new applications for in-depth analysis of synthetic, natural, organometallic, and inorganic polymers. Special sections discuss human genome and protonics, recycling codes and solid waste, optical fibers, self-assembly, combinatorial chemistry, and smart and conductive materials.




Science and Principles of Biodegradable and Bioresorbable Medical Polymers


Book Description

Science and Principles of Biodegradable and Bioresorbable Medical Polymers: Materials and Properties provides a practical guide to the use of biodegradable and bioresorbable polymers for study, research, and applications within medicine. Fundamentals of the basic principles and science behind the use of biodegradable polymers in advanced research and in medical and pharmaceutical applications are presented, as are important new concepts and principles covering materials, properties, and computer modeling, providing the reader with useful tools that will aid their own research, product design, and development. Supported by practical application examples, the scope and contents of the book provide researchers with an important reference and knowledge-based educational and training aid on the basics and fundamentals of these important medical polymers. - Provides a practical guide to the fundamentals, synthesis, and processing of bioresorbable polymers in medicine - Contains comprehensive coverage of material properties, including unique insights into modeling degradation - Written by an eclectic mix of international authors with experience in academia and industry




Polymer Science and Technology


Book Description

Your search for the perfect polymers textbook ends here - with Polymer Science and Technology. By incorporating an innovative approach and consolidating in one volume the fundamentals currently covered piecemeal in several books, this efficient text simplifies the learning of polymer science. The book is divided into three main sections: po







Introduction to Polymer Chemistry


Book Description

Fundamental concepts and reactions explained through polymers from plants and animals Macromolecular structures introduced via biological polymers Includes a course syllabus, study questions and exercises Extensive lab guidance and protocols for DNA isolation, amplification using PCR Full color figures shown throughout the text This book connects modern synthetic polymer chemistry to its roots by exploring the chemistry of natural polymers and self-assembled macromolecular structures. Designed to introduce students to the basics of polymer science, the text investigates intermolecular forces, functional groups and key reactions by means of polymers found in, and produced by, living plants and animals, including proteins, rubber, DNA, fibers, lignin, carbohydrates and many others. The author explains how varied natural polymeric systems illustrate a wide array of fundamental polymer concepts. Key analogies are demonstrated between mechanisms in biological and synthetic polymerization, and the text uses growth, DNA replication, self-assembly and other biological processes to assist the student in mastering the terminology and molecular-level mechanisms of polymer chemistry. To guide both instructors and students the book includes the outline of a one-semester course syllabus, end-of-chapter questions, as well as detailed instructions for setting up multiple labs dealing with gene isolation and amplification using polymerase chain reaction techniques (PCR). Each chapter also offers exercises based on real-world examples.