Optically Active Polymers


Book Description

The first four volumes of the series on 'Charged and Reactive Polymers' have been devoted to polymers in solution (Voh. I and II) or in gel and membrane forms (Vols. III and IV). In correlation with charges, other physical or chemical properties of macro molecules have been considered. Understanding of charge and hydrophobic effects is equally important for synthetic and biopolymers or their systems. Optically Active Polymers are related to problems of the same class, since optical activity is an inherent property of both natural macromolecules as well as a great variety of polymers synthesized in the Jast twenty years. Optical activity is a physical spectral property of chiral matter caused by asymmetrical configurations, conformations and structures which have no plane and no center of symmetry and consequently have two mirror image enantiomeric forms of inverse optical rotation. The racemic mixture of chiral enantiomers is optically inactive. The most common form of optical activity was first measured at a constant wavelength by the angle of rotation of linearly polarized light. More recently the measurements have been extended to the entire range of visible and attainable ultraviolet regions where electronic transitions are observed, giving rise to the ORD technique (Optical Rotatory Dispersion). The Cotton effects appear in the region of optically active absorption bands; outside of these bands the plain curve spectrum is also dependent on all the electronic transitions of the chromophores.




Polymer Science: A Comprehensive Reference


Book Description

The progress in polymer science is revealed in the chapters of Polymer Science: A Comprehensive Reference, Ten Volume Set. In Volume 1, this is reflected in the improved understanding of the properties of polymers in solution, in bulk and in confined situations such as in thin films. Volume 2 addresses new characterization techniques, such as high resolution optical microscopy, scanning probe microscopy and other procedures for surface and interface characterization. Volume 3 presents the great progress achieved in precise synthetic polymerization techniques for vinyl monomers to control macromolecular architecture: the development of metallocene and post-metallocene catalysis for olefin polymerization, new ionic polymerization procedures, and atom transfer radical polymerization, nitroxide mediated polymerization, and reversible addition-fragmentation chain transfer systems as the most often used controlled/living radical polymerization methods. Volume 4 is devoted to kinetics, mechanisms and applications of ring opening polymerization of heterocyclic monomers and cycloolefins (ROMP), as well as to various less common polymerization techniques. Polycondensation and non-chain polymerizations, including dendrimer synthesis and various "click" procedures, are covered in Volume 5. Volume 6 focuses on several aspects of controlled macromolecular architectures and soft nano-objects including hybrids and bioconjugates. Many of the achievements would have not been possible without new characterization techniques like AFM that allowed direct imaging of single molecules and nano-objects with a precision available only recently. An entirely new aspect in polymer science is based on the combination of bottom-up methods such as polymer synthesis and molecularly programmed self-assembly with top-down structuring such as lithography and surface templating, as presented in Volume 7. It encompasses polymer and nanoparticle assembly in bulk and under confined conditions or influenced by an external field, including thin films, inorganic-organic hybrids, or nanofibers. Volume 8 expands these concepts focusing on applications in advanced technologies, e.g. in electronic industry and centers on combination with top down approach and functional properties like conductivity. Another type of functionality that is of rapidly increasing importance in polymer science is introduced in volume 9. It deals with various aspects of polymers in biology and medicine, including the response of living cells and tissue to the contact with biofunctional particles and surfaces. The last volume is devoted to the scope and potential provided by environmentally benign and green polymers, as well as energy-related polymers. They discuss new technologies needed for a sustainable economy in our world of limited resources. Provides broad and in-depth coverage of all aspects of polymer science from synthesis/polymerization, properties, and characterization methods and techniques to nanostructures, sustainability and energy, and biomedical uses of polymers Provides a definitive source for those entering or researching in this area by integrating the multidisciplinary aspects of the science into one unique, up-to-date reference work Electronic version has complete cross-referencing and multi-media components Volume editors are world experts in their field (including a Nobel Prize winner)




Polymers in a Marine Environment


Book Description

Polymers, plastics, and composite materials are widely used in the shipping industry and so get exposed to marine waters. Biofouling of these leads to problems for ships and boats in the form of reduced speed and corrosion, which these industries would like to prevent. Several hundred thousand tons of plastics that are discarded reach the marine environment every year either from land run-off or because of maritime activities. It has been estimated that because plastics do not degrade easily, one million marine animals are killed every year either by choking on floating plastic items or by becoming entangled in plastic debris. For the shipping industry the polymer should not foul and should be stable for extended periods of time in the marine environment. For the environmentalist the waste dumped after its use should degrade fast without causing problems to flora and fauna as well to the coastal economies. Addressing one of these issues leads to enhancement of the other issue and so this is not an easy problem to solve. This book covers the interaction of polymers with the marine environment, the problems they cause to ecology, their biofouling and biodegradation, and possible solutions.




Polymer Analysis/Polymer Theory


Book Description

This series presents critical reviews of the present and future trends in polymer and biopolymer science including chemistry, physical chemistry, physics and materials science. It is addressed to all scientists at universities and in industry who wish to keep abreast of advances in the topics covered. Impact Factor Ranking: Always number one in Polymer Science. More information as well as the electronic version of the whole content available at: www.springerlink.com




Polymer Yearbook 17


Book Description

This volume contains reviews on state-of-the-art Japanese research presented in the annual Spring and Autumn meetings of the Japanese Polymer Science Society. The aim of this section is to make information on the progress of Japanese Polymer Science , and on topics of current interest to polymer scientists in Japan, more easily available worldwide.




Polymeric Chiral Catalyst Design and Chiral Polymer Synthesis


Book Description

This book reviews chiral polymer synthesis and its application to asymmetric catalysis. It features the design and use of polymer-immobilized catalysts and methods for their design and synthesis. Chapters cover peptide-catalyzed and enantioselective synthesis, optically-active polymers, and continuous flow processes. It collects recent advances in an important field of polymer and organic chemistry, with leading researchers explaining applications in academic and industry R & D.




Analysis of Chiral Organic Molecules


Book Description

For readers at least moderately familiar with the theory of analyzing volatile aroma compounds, an introduction to the wide range of techniques for analyzing chiral molecules. They include chiroptical methods such as polarimetry, optical rotation dispersion and circular dichroism; liquid, gas, super




Polymers for Electronic & Photonic Application


Book Description

The most recent advances in the use of polymeric materials by the electronic industry can be found in Polymers for Electronic and Photonic Applications. This bookprovides in-depth coverage of photoresis for micro-lithography, microelectronic encapsulants and packaging, insulators, dielectrics for multichip packaging,electronic and photonic applications of polymeric materials, among many other topics. Intended for engineers and scientists who design, process, and manufacturemicroelectronic components, this book will also prove useful for hybrid and systems packaging managers who want to be informed of the very latest developments inthis field. * Presents most recent advances in the use of polymeric materials by the electronic industry* Contributions by foremost experts in the field