Crystallization of Lipids


Book Description

An authoritative reference that contains the most up-to-date information knowledge, approaches, and applications of lipid crystals Crystallization of Lipids is a comprehensive resource that offers the most current and emerging knowledge, techniques and applications of lipid crystals. With contributions from noted experts in the field, the text covers the basic research of polymorphic structures, molecular interactions, nucleation and crystal growth and crystal network formation of lipid crystals which comprise main functional materials employed in food, cosmetic and pharmaceutical industry. The authors highlight trans-fat alternative and saturated-fat reduction technology to lipid crystallization. These two issues are the most significant challenges in the edible-application technology of lipids, and a key solution is lipid crystallization. The text focuses on the crystallization processes of lipids under various external influences of thermal fluctuation, ultrasound irradiation, shear, emulsification and additives. Designed to be practical, the book’s information can be applied to realistic applications of lipids to foods, cosmetic and pharmaceuticals. This authoritative and up-to-date guide: Highlights cutting-edge research tools designed to help analyse lipid crystallization with the most current and the conventional techniques Offers a thorough review of the information, techniques and applications of lipid crystals Includes contributions from noted experts in the field of lipid crystals Presents cutting-edge information on the topics of trans-fat alterative and saturated-fat reduction technology Written for research and development technologists as well as academics, this important resource contains research on lipid crystals which comprise the main functional materials employed in food, cosmetic and pharmaceutical industry.




Structure and Bonding in crystals


Book Description

Structure and Bonding in Crystals, Volume II discusses the factors determining crystal structure. This book examines the principles of structure and bonding in complex solids. Divided into 13 parts, this volume begins with an overview of the development of atomic pseudopotentials and the discovery that they could be applied directly to atoms in crystals. This book then provides an understanding of other relevant topics, including ionic radii, bond strength, and bond length. Other chapters focus on the problems of classifying complex solids and describe the relationship between their structures. This text also describes the alloy structure to help know how compounds react or transform. This book further explores the geometrical relationships between different structure types in crystals. The final chapter deals with the contribution of Mooser and Pearson in the study of energy-band theory and chemical bonding. Solid-state physicists and chemists, geophysicists, metallurgists, and ceramists will find this book extremely useful.




Polymorphism in Molecular Crystals


Book Description

Most people are familiar with the fact that diamond and graphite are both composed only of carbon; yet they have very different properties which result from the very different structures of the two solids - they are polymorphs of carbon. Understanding the relationship between the structures and the properties of materials is of fundamental importance in developing and producing new materials with improved or new properties. The existence of polymorphic systems allows the direct study of the connection between structures and properties. This book provides grounding on the fundamental structural and energetic basis for polymorphism, the preparation and characterization of polymorphic substances and its importance in the specific areas of pharmaceuticals, pigments and high energy (explosive) materials. The closing chapter describes the intellectual property implications and some of the precedent patent litigations in which polymorphism has played a central role. The book contains over 2500 references to provide a ready entry into the relevant literature.







Crystal Symmetries


Book Description

Crystal Symmetries is a timely account of the progress in the most diverse fields of crystallography. It presents a broad overview of the theory of symmetry and contains state of the art reports of its modern directions and applications to crystal physics and crystal properties. Geometry takes a special place in this treatise. Structural aspects of phase transitions, correlation of structure and properties, polytypism, modulated structures, and other topics are discussed. Applications of important techniques, such as X-ray crystallography, biophysical studies, EPR spectroscopy, crystal optics, and nuclear solid state physics, are represented. Contains 30 research and review papers.




Crystallography and Crystal Chemistry of Materials with Layered Structures


Book Description

In the last ten years, the chemistry and physics of materials with layered structures became an intensively investigated field in the study of the solid state. Research into physical properties of these crystals and especially investigations of their physical anisotropy related to the structural anisotropy has led to remarkable and perplexing results. Most of the layered materials exist in several polytypic modifications and can include stacking faults. The crystal structures are therefore complex and it became apparent that there was a great need for a review of the crystallographic data of materials approximating two-dimensional solids. This second volume in the series 'Physics and Chemistry of Materials with Layered Structures' has been written by specialists of different classes of layered materials. Structural data are reviewed and the most important relations between the structure and the chemical and physical properties are emphasized. The first three contributions are devoted to the transition metal dichalcogenides whose physical properties have been investigated in detail. The crystallographic data and crystal growth conditions are presented in the first paper. The second paper constitutes an incisive review of the phase transformations and charge density waves which have been observed in the metallic dichalcogenides. In two contributions the layered structures of newer ternary compounds are de scribed and the connection between structure and non-stoichiometry is discussed.




Principles of the Solid State


Book Description

Uses an integrated, scientists' approach to the principles regulating the synthesis, structure and physical characteristics of crystalline solids. Mathematical derivations are kept to a minimum. Covers electrical properties of metals and band semiconductors, superionic conductors, ferrites and solid electrolytes. Features end-of-chapter problem sets.




Science and Technology of Crystal Growth


Book Description

1. The ninth International Summer School on Crystal Growth. ISSCG IX A complete theory of crystal growth establishes the full dependence of crystal size, shape and structure on external parameters like temperature, pressure, composition, purity, growth rate and stirring of the mother phase, implicitly establishing how the corresponding fields vary in space and time. Such a theory does not exist, however. Therefore equipment to grow crystals is developed on the basis of partial knowledge. Skill, experience and creativity still are of central importance for the success o~ a crystal growth system. In this book we collected contributions from the teachers of the ninth International Summer School on Crystal Growth ISSCG IX, held 11-16 june 1995 at Papendal, the national sports centre of the Netherlands. These contributions were used during the lectures. The authors have tried to present their work in such a way that only basic physical knowledge is required to understand the papers. The book can be used as an introduction to various important sub disciplines of the science and technology of crystal growth. Since, however the information content considerably exceeds a lecture note level and touches the present limits of understanding, it is an up to date handbook as well.




Growth of Crystals


Book Description

The present volume continues the tradition of the preceding volumes. covering a wide range of crystal growth problems and treating aspects of critical importance for crystalliza tion. Changes in this field of knowledge have. however, changed the criteria for selection of papers for inclusion in this series. The increasing role of crystals in science and technology is even more apparent today. The study and utilization of these highly perfect objects of nature considerably facilitates progress in the physics and chemistry of solids. quantum electronics, optics, microelectron ics, and other sciences. The demand for crystals and crystal devices has grown steadily and has led to the emergence and rapid growth of the single crystal industry (we can safely saythat the state ofthe art in this industry is indicative ofthe overall scientific and technolo- cal potential of a country). At the same time, the introduction of crystallization techniques into other industries is gaining ever-increasing importance. To illustrate this last state ment, we can mention the fabrication of textured structural materials and direct methods of metal reduction in ores by using chemical vapor transport techniques. Crystallization tech ll niques progress both in "width" and in "depth : traditional methods are modernized. and novel techniques appear, some of them at the junction of the already existing technologies (for example, flux growth of crystals, growth from vapor with participation of the liquid phase, etc. ).