Polyoxometalate Molecular Science


Book Description

Polyoxometalates (POMs) form a large, distinctive class of molecular inorganic compounds of unrivaled electronic versatility and structural variation, with impacts ranging from chemistry, catalysis, and materials science to biology, and medicine. This book covers the basic principles governing the structure, bonding and reactivity of these metal-oxygen cluster anions and the major developments in their molecular science. The book comprises three sections. The first covers areas ranging from topological principles via synthesis and stability to reactivity in solution. It also focuses on the physical methods currently used to extract information on the molecular and electronic structures as well as the physical properties of these clusters. The second part reviews different types of POMs, focusing on those systems that currently impact other areas of interest, such as supramolecular chemistry, nanochemistry and molecular magnetism. The third section is devoted to POM-based materials and their applications and prospects in catalysis and materials science.




Trends in Polyoxometalates Research


Book Description

The book attempts to make available the recent developments in polyoxometalate (POM) synthesis. The focus centralises on the functionalisation of POMs with covalently organic moiety (for instance, the use of exogenous ligands such as carboxylate or bisphosphonate). It also delves into the development of lanthanide POMs, or the formation of blackberry-like assemblies. Likewise, the properties (redox properties, magnetism, etc...), and its applications (homogeneous and heterogeneous catalysis, photocatalysis, photoelectrocatalysis and photovoltaic cell development, etc.) are also analysed. This application concerns also the catalysis of H2O oxidation, photodegradation of pollutants, and reduction of cationic metal to form original nanoparticles. The use of polyoxometalates as catalysts for biologically relevant reactions is also considered. One of the other aims of the book is to highlight some recent developments and perspectives in the domain of materials and their applications. For instance, the use of POM-organic photosensitiser hybrids can also be achieved for application in the generation of photocurrent and the development of new types of solar cells. By combining POMs with electrically active materials, a variety of applications have been explored and several examples of POM-based electronic materials are presented in this book.




Polyoxometalate Chemistry for Nano-Composite Design


Book Description

"Chemists from several international polyoxometalate research groups discussed recent results, including: controlled self-organization processes for the preparation of nano-composites; electronic interactions in magnetic mixed-valence cryptands and coronands; synthesis of the novel polyoxometalates with topological or biological significance; systematic investigations in acid-base and/or redox catalysis for organic transformations; and electronic properties in materials science."--Page v




Polyoxometalates: From Platonic Solids to Anti-Retroviral Activity


Book Description

MICHAEL T. POPE AND ACHIM MULLER Department of Chemistry, Georgetown University, Washington, DC 20057-2222, U.S.A.; Department of Chemistry, University of Bielefeld, D-4BOO Bielefeld 1, F.R.G. Polyoxometalates, from their discovery and early development in the final decades of the 19th century to their current significance in disciplines as diverse as chemistry, mathematics, and medicine, continue to display surprisingly novel structures, unexpected reactivities and applications, and to attract increasing attention worldwide. Most of the contributors to the present volume participated in the workshop held at the Center for Interdisciplinary Research at the University of Bielefeld, July 15-17, 1992. The choice of topics illustrates some of the variety of directions and fields in which polyoxometalates can play an important role. Although many of the leading polyoxometalate research groups are represented here, we regret that time constraints, financial limitations, and in some cases difficulties of communication did not allow us to include significant and imp- tant work from other groups outside Europe and North America. In the following we briefly review the current status of the field of po- oxometalates.







Lanthanide Single Molecule Magnets


Book Description

This book begins by providing basic information on single-molecule magnets (SMMs), covering the magnetism of lanthanide, the characterization and relaxation dynamics of SMMs and advanced means of studying lanthanide SMMs. It then systematically introduces lanthanide SMMs ranging from mononuclear and dinuclear to polynuclear complexes, classifying them and highlighting those SMMs with high barrier and blocking temperatures – an approach that provides some very valuable indicators for the structural features needed to optimize the contribution of an Ising type spin to a molecular magnet. The final chapter presents some of the newest developments in the lanthanide SMM field, such as the design of multifunctional and stimuli-responsive magnetic materials as well as the anchoring and organization of the SMMs on surfaces. In addition, the crystal structure and magnetic data are clearly presented with a wealth of illustrations in each chapter, helping newcomers and experts alike to better grasp ongoing trends and explore new directions. Jinkui Tang is a professor at Changchun Institute of Applied Chemistry, Chinese Academy of Sciences. Peng Zhang is currently pursuing his PhD at Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, with a specific focus on the molecular magnetism of lanthanide compounds under the supervision of Prof. Jinkui Tang.




Metal Oxides in Supercapacitors


Book Description

Metal Oxides in Supercapacitors addresses the fundamentals of metal oxide-based supercapacitors and provides an overview of recent advancements in this area. Metal oxides attract most of the materials scientists use due to their excellent physico-chemical properties and stability in electrochemical systems. This justification for the usage of metal oxides as electrode materials in supercapacitors is their potential to attain high capacitance at low cost. After providing the principles, the heart of the book discusses recent advances, including: binary metal oxides-based supercapacitors, nanotechnology, ternary metal oxides, polyoxometalates and hybrids. Moreover, the factors affecting the charge storage mechanism of metal oxides are explored in detail. The electrolytes, which are the soul of supercapacitors and a mostly ignored character of investigations, are also exposed in depth, as is the fabrication and design of supercapacitors and their merits and demerits. Lastly, the market status of supercapacitors and a discussion pointing out the future scope and directions of next generation metal oxides based supercapacitors is explored, making this a comprehensive book on the latest, cutting-edge research in the field. - Explores the most recent advances made in metal oxides in supercapacitors - Discusses cutting-edge nanotechnology for supercapacitors - Includes fundamental properties of metal oxides in supercapacitors that can be used to guide and promote technology development - Contains contributions from leading international scientists active in supercapacitor research and manufacturing




Bifunctional Molecular Catalysis


Book Description

Masakatsu Shibasaki, Motomu Kanai, Shigeki Matsunaga, and Naoya Kumagai: Multimetallic Multifunctional Catalysts for Asymmetric Reactions.- Takao Ikariya: Bifunctional transition metal-based molecular catalysts for asymmetric syntheses.- Chidambaram Gunanathan and David Milstein: Bond Activation by Metal-Ligand Cooperation: Design of ”Green” Catalytic Reactions Based on Aromatization-Dearomatization of Pincer Complexes.- Madeleine C. Warner, Charles P. Casey, and Jan-E. Bäckvall: Shvo’s Catalyst in Hydrogen Transfer Reactions.- Noritaka Mizuno, Keigo Kamata, and Kazuya Yamaguchi: Liquid-Phase Selective Oxidation by Multimetallic Active Sites of Polyoxometalate-Based Molecular Catalysts.- Pingfan Li and Hisashi Yamamoto: Bifunctional Acid Catalysts for Organic Synthesis.- Jun-ichi Ito, Hisao Nishiyama: Bifunctional Phebox Complexes for Asymmetric Catalysis.




Polyoxometalate Chemistry


Book Description

Polyoxometalate Chemistry continues a long-running series that describes recent advances in scientific research, in particular, in the field of inorganic chemistry. Several highly regarded experts, mostly from academia, contribute on specific topics. The current issue focuses on recent advances in the development and application of polyoxometalate complexes in areas such as solution chemistry, self-organization, solar fuels, non-aqueous chemistry, spintronics, nanoscience and catalysis. - Presents a single monograph on recent developments in polyoxometalate chemistry as written by scientific leaders in this field - Concise and informative presentations cover a wide range of topics in this field of chemistry - Contains detailed literature references, enabling the reader to move on to the source of the reported work where more details can be found - Provides a solid presentation of a hard-cover book of excellent technical quality




Polyoxometalate-Based Assemblies and Functional Materials


Book Description

The authors of this volume concentrate on the recent progress of novel polyoxometalate (POM) syntheses, as well as advances made in catalytic, electrochemical, and sensing systems. The state-of-the-art techniques such as flow system and gel-electrophoresis for the discovery of POMs are covered with a detailed discussion. Of particular importance, the application of POM-based materials in photo-sensing, heterogeneous catalysis, energy conservation and storage, and gas separation is reviewed. Over the past few years, POM chemistry has witnessed a remarkable progress with more than 1500 papers published each year. Due to their intrinsic structural features, POMs are considered as versatile building blocks for the construction of sophisticated complex assemblies and advanced multi-functional materials. Various strategies, methods, and techniques have been adopted to develop POM-based materials with intriguing properties and excellent performance. All the contributors to this volume are young, vibrant chemists in this research field and all the works are carefully collected from the authors’ years of experience. This volume serves as an essential reference for every POM chemist and is of great interest to new researchers who wish to learn more about this area.