Polyploid and Hybrid Genomics


Book Description

Polyploidy plays an important role in biological diversity, trait improvement, and plant species survival. Understanding the evolutionary phenomenon of polyploidy is a key challenge for plant and crop scientists. This book is made up of contributions from leading researchers in the field from around the world, providing a truly global review of the subject. Providing broad-ranging coverage, and up-to-date information from some of the world’s leading researchers, this book is an invaluable resource for geneticists, plant and crop scientists, and evolutionary biologists.




Polyploidy and Genome Evolution


Book Description

Polyploidy – whole-genome duplication (WGD) – is a fundamental driver of biodiversity with significant consequences for genome structure, organization, and evolution. Once considered a speciation process common only in plants, polyploidy is now recognized to have played a major role in the structure, gene content, and evolution of most eukaryotic genomes. In fact, the diversity of eukaryotes seems closely tied to multiple WGDs. Polyploidy generates new genomic interactions – initially resulting in “genomic and transcriptomic shock” – that must be resolved in a new polyploid lineage. This process essentially acts as a “reset” button, resulting in genomic changes that may ultimately promote adaptive speciation. This book brings together for the first time the conceptual and theoretical underpinnings of polyploid genome evolution with syntheses of the patterns and processes of genome evolution in diverse polyploid groups. Because polyploidy is most common and best studied in plants, the book emphasizes plant models, but recent studies of vertebrates and fungi are providing fresh perspectives on factors that allow polyploid speciation and shape polyploid genomes. The emerging paradigm is that polyploidy – through alterations in genome structure and gene regulation – generates genetic and phenotypic novelty that manifests itself at the chromosomal, physiological, and organismal levels, with long-term ecological and evolutionary consequences.




Polyploidy and Genome Evolution


Book Description

Polyploidy – whole-genome duplication (WGD) – is a fundamental driver of biodiversity with significant consequences for genome structure, organization, and evolution. Once considered a speciation process common only in plants, polyploidy is now recognized to have played a major role in the structure, gene content, and evolution of most eukaryotic genomes. In fact, the diversity of eukaryotes seems closely tied to multiple WGDs. Polyploidy generates new genomic interactions – initially resulting in “genomic and transcriptomic shock” – that must be resolved in a new polyploid lineage. This process essentially acts as a “reset” button, resulting in genomic changes that may ultimately promote adaptive speciation. This book brings together for the first time the conceptual and theoretical underpinnings of polyploid genome evolution with syntheses of the patterns and processes of genome evolution in diverse polyploid groups. Because polyploidy is most common and best studied in plants, the book emphasizes plant models, but recent studies of vertebrates and fungi are providing fresh perspectives on factors that allow polyploid speciation and shape polyploid genomes. The emerging paradigm is that polyploidy – through alterations in genome structure and gene regulation – generates genetic and phenotypic novelty that manifests itself at the chromosomal, physiological, and organismal levels, with long-term ecological and evolutionary consequences.







Plant Genomes


Book Description

Recent major advances in the field of comparative genomics and cytogenomics of plants, particularly associated with the completion of ambitious genome projects, have uncovered astonishing facets of the architecture and evolutionary history of plant genomes. The aim of this book was to review these recent developments as well as their implications in our understanding of the mechanisms which drive plant diversity. New insights into the evolution of gene functions, gene families and genome size are presented, with particular emphasis on the evolutionary impact of polyploidization and transposable elements. Knowledge on the structure and evolution of plant sex chromosomes, centromeres and microRNAs is reviewed and updated. Taken together, the contributions by internationally recognized experts present a panoramic overview of the structural features and evolutionary dynamics of plant genomes.This volume of Genome Dynamics will provide researchers, teachers and students in the fields of biology and agronomy with a valuable source of current knowledge on plant genomes.




Polyploidy


Book Description

This volume provides protocols on evidence for polyploidy and how it can be unveiled. Chapters guide readers through evolutionary experiments, measure effects of polyploidy, evidence for (remnants of) ancient WGDs, models of chromosome number evolution, population genomics approaches to study polyploidy, analysing genetic data from polyploid populations, Phylogenetic and phylogenomic methods, gene expression, gene regulation, unicellular alga (Chlamydomonas), and a fast-growing duckweed (Spirodela). Written in the format of the highly successful Methods in Molecular Biology series, each chapter includes an introduction to the topic, lists necessary materials and reagents, includes tips on troubleshooting and known pitfalls, and step-by-step, readily reproducible protocols. Authoritative and cutting-edge, Polyploidy: Method and Protocols aims to be of interest to experimental and computational (evolutionary) biologists, molecular biologists, and biotechnologists.







Genetics of Speciation


Book Description

The nature of populations, races, subspecies, and species. Genetic basis of isolation. Origin of isolation - theoretical. Origin of isolation - experimental. The nature of the speciation process.




Polyploidy and Hybridization for Crop Improvement


Book Description

Many of our current agricultural crops are natural or agricultural hybrids (between two or more species), or polyploids (containing more than one genome or set of chromosomes). These include potato, oats, cotton, oilseed rape, wheat, strawberries, kiwifruit, banana, seedless watermelon, triticale and many others. Polyploidy and hybridization can also be used for crop improvement: for example, to introgress disease resistance from wild species into crops, to produce seedless fruits for human consumption, or even to create entirely new crop types. Some crop genera have hundreds of years of interspecific hybridization and ploidy manipulation behind them, while in other genera use of these evolutionary processes for crop improvement is still at the theoretical stage. This book brings together stories and examples by expert researchers and breeders working in diverse crop genera, and details how polyploidy and hybridization processes have shaped our current crops, how these processes have been utilized for crop improvement in the past, and how polyploidy and interspecific hybridization can be used for crop improvement in the future.




Polyploidy: Recent Trends and Future Perspectives


Book Description

This is the first book to present consolidated, up-to-date information regarding recent trends and future perspectives of polyploidy – a phenomenon that has played a pivotal role in the evolution of domesticated plants and a research area that has been given new impetus thanks to advances in plant biology techniques integrated with bioinformatics tools. The book emphasizes the tremendous potential of polyploidy in plant breeding to improve existing crops and develop new ones to cater for the needs of an ever-increasing human population. It is divided into 8 chapters, each including an introduction and references, and complemented with plentiful illustrations, figures and tables. The chapters cover all facets of polyploidy, from its origin, occurrence, recent polyploidization, formation pathways, artificial induction, criteria for detection, and its significance in the contexts of genomic changes and the changing environment, as well as future perspectives. The book discusses at length the aspects of polyploidy that need to be understood for a thorough comprehension of this biologically important subject. It also highlights the recent techniques involved in polyploidy research. Further, it provides a detailed account, with suitable examples, of the different genetic and epigenetic changes that occur in polyploids to help their survival. A timely publication, it serves as an excellent single-source textbook. It is a valuable resource for students, research scholars and teachers of biological sciences in particular, and to plant breeders, cytologists, geneticists, and molecular biologists in general.