The Conifers: Genomes, Variation and Evolution


Book Description

This book is the first comprehensive volume on conifers detailing their genomes, variations, and evolution. The book begins with general information about conifers such as taxonomy, geography, reproduction, life history, and social and economic importance. Then topics discussed include the full genome sequence, complex traits, phenotypic and genetic variations, landscape genomics, and forest health and conservation. This book also synthesizes the research included to provide a bigger picture and suggest an evolutionary trajectory. As a large plant family, conifers are an important part of economic botany. The group includes the pines, spruces, firs, larches, yews, junipers, cedars, cypresses, and sequoias. Of the phylum Coniferophyta, conifers typically bear cones and evergreen leaves. Recently, there has been much data available in conifer genomics with the publication of several crop and non-crop genome sequences. In addition to their economic importance, conifers are an important habitat for humans and animals, especially in developing parts of the world. The application of genomics for improving the productivity of conifer crops holds great promise to help provide resources for the most needy in the world.




Population Genetics of Forest Trees


Book Description

Tropical climates, which occur between 23°30'N and S latitude (Jacob 1988), encompass a wide variety of plant communities (Hartshorn 1983, 1988), many of which are diverse in their woody floras. Within this geographic region, temperature and the amount and seasonality of rainfall define habitat types (UNESCO 1978). The F AO has estimated that there 1 are about 19 million km of potentially forested area in the global tropics, of which 58% were estimated to still be in closed forest in the mid-1970s (Sommers 1976; UNESCO 1978). Of this potentially forested region, 42% is categorized as dry forest lifezone, 33% is tropical moist forest, and 25% is wet or rain forest (Lugo 1988). The species diversity of these tropical habitats is very high. Raven (1976, in Mooney 1988) estimated that 65% of the 250,000 or more plant species of the earth are found in tropical regions. Of this floristic assemblage, a large fraction are woody species. In the well-collected tropical moist forest of Barro Colorado Island, Panama, 39. 7% (481 of 1212 species) of the native phanerogams are woody, arborescent species (Croat 1978). Another 21. 9% are woody vines and lianas. Southeast Asian Dipterocarp forests may contain 120-200 species of trees per hectare (Whitmore 1984), and recent surveys in upper Amazonia re corded from 89 to 283 woody species ~ 10 cm dbh per hectare (Gentry 1988). Tropical communities thus represent a global woody flora of significant scope.




Genetics, Genomics and Breeding of Conifers


Book Description

With contributions by internationally reputed researchers in the field, this book presents the implications of the genomic revolution for conifers-promoting a better understanding of the evolution of these organisms as well as new knowledge about the molecular basis of quantitative trait variation. Both of these discoveries play important roles in




Forest Conservation Genetics


Book Description

Forest management must be sustainable not only in ecological, economic and social, but also genetic terms. Many forest managers are advocating and developing management strategies that give priority to conserving genetic diversity within production systems, or that recognise the importance of genetic considerations in achieving sustainable management. Forest Conservation Genetics draws together much previously uncollected information relevant to managing and conserving forests. The content emphasises the importance of conserving genetic diversity in achieving sustainable management. Each chapter is written by a leading expert and has been peer reviewed. Readers without a background in genetics will find the logical sequence of topics allows easy understanding of the principles involved and how those principles may impact on day-to-day forest planning and management decisions. The book is primarily aimed at undergraduate students of biology, ecology, forestry, and graduate students of forest genetics, resource management policy and/or conservation biology. It will prove useful for those teaching courses in these fields and as such help to increase the awareness of genetic factors in conservation and sustainable management, in both temperate and tropical regions.







Proceedings


Book Description