Cellular and Porous Materials in Structures and Processes


Book Description

The book covers the state-of-the-art treatment in modelling and experimental investigation of the mechanical behaviour of cellular and porous materials. Starting from the continuum mechanical modelling, to the numerical simulation, several important questions related to applications such as the fracture and impact behaviour are covered.




Cellular Materials in Nature and Medicine


Book Description

Describes the structure and mechanics of a wide range of cellular materials in botany, zoology, and medicine.




Cellular Ceramics


Book Description

Cellular ceramics are a specific class of porous materials which includes among others foams, honeycombs, connected fibers, robocast structures and assembled hollow spheres. Because of their particular structure, cellular ceramics display a wide variety of specific properties which make them indispensable for various engineering applications. An increasing number of patents, scientific literature and international conferences devoted to cellular materials testifies to a rapidly growing interest of the technical community in this topic. New applications for cellular ceramics are constantly being put under development. The book, authored by leading experts in this emerging field, gives an overview of the main aspects related to the processing of diverse cellular ceramic structures, methods of structural and properties characterisation and well established industrial, novel and potential applications. It is an introduction to newcomers in this research area and allows students to obtain an in-depth knowledge of basic and practical aspects of this fascinating class of advanced materials.




Porous and Cellular Materials for Structural Applications


Book Description

Presents 43 papers from the April 1998 symposium discussing recent developments in the field including polymer-, ceramic-, and metal-based materials. The contents are organized into eight sections which treat the mechanical behavior of solid foams, properties of metallic foams, the manufacture of solid foams, other foam materials and processes, hot isostatically compacted and expanded materials, applications and design principles of foams, and GASAR materials. Annotation copyrighted by Book News, Inc., Portland, OR




Cellular Solids


Book Description

In this new edition of their classic work on Cellular Solids, the authors have brought the book completely up to date, including new work on processing of metallic and ceramic foams and on the mechanical, electrical and acoustic properties of cellular solids. Data for commercially available foams are presented on material property charts; two new case studies show how the charts are used for selection of foams in engineering design. Over 150 references appearing in the literature since the publication of the first edition are cited. The text summarises current understanding of the structure and mechanical behaviour of cellular materials, and the ways in which they can be exploited in engineering design. Cellular solids include engineering honeycombs and foams (which can now be made from polymers, metals, ceramics and composites) as well as natural materials, such as wood, cork and cancellous bone.




MetFoam 2007


Book Description

Explains ways to design and process metallic foams, including many non-aluminum foams. This book illustrates the numerous industry applications where metallic foams and porous metals are being implemented.




Voids in Materials


Book Description

All materials have voids in them, at some scale. Sometimes the voids are ignored, sometimes they are taken into account, and other times they are the focal point of the research. Voids in Materials: From Unavoidable Defects to Designed Cellular Materials takes due notice of all these occurrences, whether designed or unavoidable defects. We define, categorize, and characterize the voids (or empty spaces in materials) and we analyze the effects they have on material properties. This second edition is an updated and expanded central reference for voids in materials and covers all types of voids, intrinsic and intentional, and stochastic and nonstochastic, and the processes and conditions that are needed to create them and is a valuable resource to students in the areas of mechanical engineering, chemical engineering, materials science and engineering, physics, and chemistry, as well as scientists, researchers, and engineers in industry. - the effect of voids in materials; from low volume fraction defects and free volume in polymer networks to high void volume fraction foams and aerogels - how and why voids are introduced into materials across the length scales - biomaterial design used in vivo for soft, hard, and nerve tissue scaffolds - metallic and geopolymeric foams - additive manufacturing technologies used to tailor regularity (R) in the cell structure - stochastic, nonstochastic, and Voronoi foams - the latest techniques for characterizing voids - new chapters, covering the Kirkendall effect to create hollow and porous structures, and nanometer scale voids: nanotubes, zeolites, organic frameworks, and nanoporous noble metals




Porous Materials


Book Description

Engineers and scientists alike will find this book to be an excellent introduction to the topic of porous materials, in particular the three main groups of porous materials: porous metals, porous ceramics, and polymer foams. Beginning with a general introduction to porous materials, the next six chapters focus on the processing and applications of each of the three main materials groups. The book includes such new processes as gel-casting and freeze-drying for porous ceramics and self-propagating high temperature synthesis (SHS) for porous metals. The applications discussed are relevant to a wide number of fields and industries, including aerospace, energy, transportation, construction, electronics, biomedical and others. The book concludes with a chapter on characterization methods for some basic parameters of porous materials. Porous Materials: Processing and Applications is an excellent resource for academic and industrial researchers in porous materials, as well as for upper-level undergraduate and graduate students in materials science and engineering, physics, chemistry, mechanics, metallurgy, and related specialties. - A comprehensive overview of processing and applications of porous materials – provides younger researchers, engineers and students with the best introduction to this class of materials - Includes three full chapters on modern applications - one for each of the three main groups of porous materials - Introduces readers to several characterization methods for porous materials, including methods for characterizing pore size, thermal conductivity, electrical resistivity and specific surface area




Biofoams


Book Description

Addresses a Growing Need for the Development of Cellular and Porous Materials in IndustryBuilding blocks used by nature are motivating researchers to create bio-inspired cellular structures that can be used in the development of products for the plastic, food, and biomedical industry. Representing a unified effort by international experts, Biofoams




Physical Metallurgy


Book Description

This fifth edition of the highly regarded family of titles that first published in 1965 is now a three-volume set and over 3,000 pages. All chapters have been revised and expanded, either by the fourth edition authors alone or jointly with new co-authors. Chapters have been added on the physical metallurgy of light alloys, the physical metallurgy of titanium alloys, atom probe field ion microscopy, computational metallurgy, and orientational imaging microscopy. The books incorporate the latest experimental research results and theoretical insights. Several thousand citations to the research and review literature are included. - Exhaustively synthesizes the pertinent, contemporary developments within physical metallurgy so scientists have authoritative information at their fingertips - Replaces existing articles and monographs with a single, complete solution - Enables metallurgists to predict changes and create novel alloys and processes