Post-Bonneville Paleoearthquake Chronology of the Salt Lake City Segment, Wasatch Fault Zone, from the 1999 "Megatrench" Site


Book Description

This report presents the results of a paleoseismic investigation designed to date a long series of consecutive earthquakes on the Wasatch fault zone and to measure the variability of recurrence times between the events. Geologists have long recognized that the comparatively short average recurrence interval (compared to most other basin-and-range normal faults) between large surface-faulting earthquakes on the Salt Lake City segment of the Wasatch fault zone during mid- to late-Holocene time is potentially anomalous, and possibly affected by the rise and fall of Lake Bonneville. This study extends the paleoearthquake record back to Bonneville time, nearly doubling the previous record, and provides new information on the timing and periodicity of surface faulting on the Salt Lake City segment from the latest Pleistocene through the Holocene. The trench and accompanying auger hole for this study exposed 26 meters of vertical section, roughly four times that of a typical paleoseismic trench on the Wasatch fault zone, hence the name “Megatrench.”




Post-Provo Paleoearthquake Chronology of the Brigham City Segment, Wasatch Fault Zone, Utah


Book Description

This Utah Geological Survey Miscellaneous Publication, Post-Provo Paleoearthquake Chronology of the Brigham City Segment, Wasatch Fault Zone, Utah, is the eleventh report in the Paleoseismology of Utah series. This series makes the results of paleoseismic investigations in Utah available to geoscientists, engineers, planners, public officials, and the general public. These studies provide critical information on paleoearthquake parameters such as timing, recurrence, displacement, slip rate, and fault geometry which can be used to characterize potential seismic sources and evaluate the long-term seismic hazard presented by Utah’s Quaternary faults. This report presents the results of the most extensive single paleoseismic-trenching project yet conducted on the Wasatch fault zone. The purpose of the study was to lengthen the paleoseismic chronology for the Brigham City segment of the Wasatch fault zone beyond the 6,000-year record previously available, and to resolve questions regarding the irregular pattern of paleoearthquakes reported by earlier workers for the Brigham City segment. This study makes extensive use of radiocarbon, thermoluminescence, and infrared stimulated luminescence dating techniques to develop a real-time chronology of past surface-faulting earthquakes.




Paleoseismic Investigation of the Northern Strand of the Nephi Segment of the Wasatch Fault Zone at Santaquin, Utah


Book Description

This CD contains a 33 page report, appendix, and plate. This study presents the results of fault-trench excavations near Santaquin, Utah, and includes discussion of (1) previous paleoseismic investigations on the Nephi segment, (2) the geology of the Santaquin trench site and excavations (3) paleoseismic results, including the timing of the most recent surface-faulting earthquake, fault displacement and slip rate, and surface-faulting earthquake recurrence and (4) implications for the segmentation of the southern Wasatch fault zone.







Interior Western United States


Book Description







Consensus Preferred Recurrence-interval and Vertical Slip-rate Estimates


Book Description

This report presents the results of the Utah Quaternary Fault Parameters Working Group (hereafter referred to as the Working Group) review and evaluation of Utah’s Quaternary fault paleoseismic-trenching data. The purpose of the review was to (1) critically evaluate the accuracy and completeness of the paleoseismictrenching data, particularly regarding earthquake timing and displacement, (2) where the data permit, assign consensus, preferred recurrence-interval (RI) and vertical slip-rate (VSR) estimates with appropriate confidence limits to the faults/fault sections under review, and (3) identify critical gaps in the paleoseismic data and recommend where and what kinds of additional paleoseismic studies should be performed to ensure that Utah’s earthquake hazard is adequately documented and understood. It is important to note that, with the exception of the Great Salt Lake fault zone, the Working Group’s review was limited to faults/fault sections having paleoseismic-trenching data. Most Quaternary faults/fault sections in Utah have not been trenched, but many have RI and VSR estimates based on tectonic geomorphology or other non-trench-derived studies. Black and others compiled the RI and VSR data for Utah’s Quaternary faults, both those with and without trenches.




History of Late Holocene Earthquakes at the Willow Creek Site and on the Nephi Segment, Wasatch Fault Zone, Utah


Book Description

This 43-page report presents new data from the Willow Creek site that provides well-defined and narrow bounds on the times of the three youngest earthquakes on the southern strand of the Nephi segment, Wasatch Fault zone, and refines the time of the youngest earthquake to about 200 years ago. This is the youngest surface rupture on the entire Wasatch fault zone, which occurred about a century or less before European settles arrived in Utah. Two trenches at the Willow Creek site exposed three scarp-derived colluvial wedges that are evidence of three paleoearthquakes. OxCal modeling of ages from Willow Creek indicate that paleoearthquake WC1 occurred at 0.2 ± 0.1 ka, WC2 occurred at 1.2 ± 0.1 ka, and WC3 occurred at 1.9 ± 0.6 ka. Stratigraphic constraints on the time of paleoearthquake WC4 are extremely poor, so OxCal modeling only yields a broadly constrained age of 4.7 ± 1.8 ka. Results from the Willow Creek site significantly refine the times of late Holocene earthquakes on the Southern strand of the Nephi segment, and this result, when combined with a reanalysis of the stratigraphic and chronologic information from previous investigations at North Creek and Red Canyon, yield a stronger basis of correlating individual earthquakes between all three sites.




Geologic Field Trips to the Basin and Range, Rocky Mountains, Snake River Plain, and Terranes of the U.S. Cordillera


Book Description

Compiled for the 2011 joint meeting of the GSA Rocky Mountain and Cordilleran Sections, this field guide provides an introduction to some of the remarkable geology of the Rocky Mountain and Cordillera regions.




Climate Forcing of Geological Hazards


Book Description

Climate Forcing of Geological Hazards provides a valuable new insight into how climate change is able to influence, modulate and trigger geological and geomorphological phenomena, such as earthquakes, tsunamis, volcanic eruptions and landslides; ultimately increasing the risk of natural hazards in a warmer world. Taken together, the chapters build a panorama of a field of research that is only now becoming recognized as important in the context of the likely impacts and implications of anthropogenic climate change. The observations, analyses and interpretations presented in the volume reinforce the idea that a changing climate does not simply involve the atmosphere and hydrosphere, but also elicits potentially hazardous responses from the solid Earth, or geosphere. Climate Forcing of Geological Hazards is targeted particularly at academics, graduate students and professionals with an interest in environmental change and natural hazards. As such, we are hopeful that it will encourage further investigation of those mechanisms by which contemporary climate change may drive potentially hazardous geological and geomorphological activity, and of the future ramifications for society and economy.