Power Electronics with MATLAB


Book Description

"Discusses the essential concepts of power electronics through MATLAB examples and simulations"--




Power Electronic Converters


Book Description

Provides a step-by-step method for the development of a virtual interactive power electronics laboratory. The book is suitable for undergraduates and graduates for their laboratory course and projects in power electronics. It is equally suitable for professional engineers in the power electronics industry. The reader will learn to develop interactive virtual power electronics laboratory and perform simulations of their own, as well as any given power electronic converter design using SIMULINK with advanced system model and circuit component level model. Features Examples and Case Studies included throughout. Introductory simulation of power electronic converters is performed using either PSIM or MICROCAP Software. Covers interactive system model developed for three phase Diode Clamped Three Level Inverter, Flying Capacitor Three Level Inverter, Five Level Cascaded H-Bridge Inverter, Multicarrier Sine Phase Shift PWM and Multicarrier Sine Level Shift PWM. System models of power electronic converters are verified for performance using interactive circuit component level models developed using Simscape-Electrical, Power Systems and Specialized Technology block set. Presents software in the loop or Processor in the loop simulation with a power electronic converter examples.




Introduction to Microcontroller Programming for Power Electronics Control Applications


Book Description

Microcontroller programming is not a trivial task. Indeed, it is necessary to set correctly the required peripherals by using programming languages like C/C++ or directly machine code. Nevertheless, MathWorks® developed a model-based workflow linked with an automatic code generation tool able to translate Simulink® schemes into executable files. This represents a rapid prototyping procedure, and it can be applied to many microcontroller boards available on the market. Among them, this introductory book focuses on the C2000 LaunchPadTM family from Texas InstrumentsTM to provide the reader basic programming strategies, implementation guidelines and hardware considerations for some power electronics-based control applications. Starting from simple examples such as turning on/off on-board LEDs, Analog-to-Digital conversion, waveform generation, or how a Pulse-Width-Modulation peripheral should be managed, the reader is guided through the settings of the specific MCU-related Simulink® blocks enabled for code translation. Then, the book proposes several control problems in terms of power management of RL and RLC loads (e.g., involving DC-DC converters) and closed-loop control of DC motors. The control schemes are investigated as well as the working principles of power converter topologies needed to drive the systems under investigation. Finally, a couple of exercises are proposed to check the reader’s understanding while presenting a processor-in-the loop (PIL) technique to either emulate the dynamics of complex systems or testing computational performance. Thus, this book is oriented to graduate students of electrical and automation and control engineering pursuing a curriculum in power electronics and drives, as well as to engineers and researchers who want to deepen their knowledge and acquire new competences in the design and implementations of control schemes aimed to the aforementioned application fields. Indeed, it is assumed that the reader is well acquainted with fundamentals of electrical machines and power electronics, as well as with continuous-time modeling strategies and linear control techniques. In addition, familiarity with sampled-data, discrete-time system analysis and embedded design topics is a plus. However, even if these competences are helpful, they are not essential, since this book provides some basic knowledge even to whom is approaching these topics for the first time. Key concepts are developed from scratch, including a brief review of control theory and modeling strategies for power electronic-based systems.




Electrotechnical Systems


Book Description

Filling a gap in the literature, Electrotechnical Systems: Simulation with Simulink® and SimPowerSystemsTM explains how to simulate complicated electrical systems more easily using SimPowerSystemsTM blocks. It gives a comprehensive overview of the powerful SimPowerSystems toolbox and demonstrates how it can be used to create and investigate models of both classic and modern electrotechnical systems. Build from Circuit Elements and Blocks to System Models Building from simple to more complex topics, the book helps readers better understand the principles, features, and detailed functions of various electrical systems, such as electrical drives, power electronics, and systems for production and distribution of electrical energy. The text begins by describing the models of the main circuit elements, which are used to create the full system model, and the measuring and control blocks. It then examines models of semiconductor devices used in power electronics as well as models of DC and AC motors. The final chapter discusses the simulation of power production and transmission systems, including hydraulic turbine, steam turbine, wind, and diesel generators. The author also develops models of systems that improve the quality of electrical energy, such as active filters and various types of static compensators. Get a Deeper Understanding of Electrical Systems and How to Simulate Them A companion CD supplies nearly 100 models of electrotechnical systems created using SimPowerSystems. These encompass adaptations of SimPowerSystems demonstrational models, as well as models developed by the author, including many important applications related to power electronics and electrical drives, which are not covered by the demonstrational models. In addition to showing how the models can be used, he supplies the theoretical background for each. Offering a solid understanding of how electrical systems function, this book guides readers to use SimPowerSystems to create and investigate electrical systems, including those under development, more effectively.




Fundamentals of Electric Machines: A Primer with MATLAB


Book Description

An electric machine is a device that converts mechanical energy into electrical energy or vice versa. It can take the form of an electric generator, electric motor, or transformer. Electric generators produce virtually all electric power we use all over the world. Electric machine blends the three major areas of electrical engineering: power, control and power electronics. This book presents the relation of power quantities for the machine as the current, voltage power flow, power losses, and efficiency. This book will provide a good understanding of the behavior and its drive, beginning with the study of salient features of electrical dc and ac machines.




Electronics and Circuit Analysis Using MATLAB


Book Description

The use of MATLAB is ubiquitous in the scientific and engineering communities today, and justifiably so. Simple programming, rich graphic facilities, built-in functions, and extensive toolboxes offer users the power and flexibility they need to solve the complex analytical problems inherent in modern technologies. The ability to use MATLAB effectively has become practically a prerequisite to success for engineering professionals. Like its best-selling predecessor, Electronics and Circuit Analysis Using MATLAB, Second Edition helps build that proficiency. It provides an easy, practical introduction to MATLAB and clearly demonstrates its use in solving a wide range of electronics and circuit analysis problems. This edition reflects recent MATLAB enhancements, includes new material, and provides even more examples and exercises. New in the Second Edition: Thorough revisions to the first three chapters that incorporate additional MATLAB functions and bring the material up to date with recent changes to MATLAB A new chapter on electronic data analysis Many more exercises and solved examples New sections added to the chapters on two-port networks, Fourier analysis, and semiconductor physics MATLAB m-files available for download Whether you are a student or professional engineer or technician, Electronics and Circuit Analysis Using MATLAB, Second Edition will serve you well. It offers not only an outstanding introduction to MATLAB, but also forms a guide to using MATLAB for your specific purposes: to explore the characteristics of semiconductor devices and to design and analyze electrical and electronic circuits and systems.




Modeling Power Electronics and Interfacing Energy Conversion Systems


Book Description

Discusses the application of mathematical and engineering tools for modeling, simulation and control oriented for energy systems, power electronics and renewable energy This book builds on the background knowledge of electrical circuits, control of dc/dc converters and inverters, energy conversion and power electronics. The book shows readers how to apply computational methods for multi-domain simulation of energy systems and power electronics engineering problems. Each chapter has a brief introduction on the theoretical background, a description of the problems to be solved, and objectives to be achieved. Block diagrams, electrical circuits, mathematical analysis or computer code are covered. Each chapter concludes with discussions on what should be learned, suggestions for further studies and even some experimental work. Discusses the mathematical formulation of system equations for energy systems and power electronics aiming state-space and circuit oriented simulations Studies the interactions between MATLAB and Simulink models and functions with real-world implementation using microprocessors and microcontrollers Presents numerical integration techniques, transfer-function modeling, harmonic analysis and power quality performance assessment Examines existing software such as, MATLAB/Simulink, Power Systems Toolbox and PSIM to simulate power electronic circuits including the use of renewable energy sources such as wind and solar sources The simulation files are available for readers who register with the Google Group: power-electronics-interfacing-energy-conversion-systems@googlegroups.com. After your registration you will receive information in how to access the simulation files, the Google Group can also be used to communicate with other registered readers of this book.




Renewable Energy Devices and Systems with Simulations in MATLAB® and ANSYS®


Book Description

Due to the increasing world population, energy consumption is steadily climbing, and there is a demand to provide solutions for sustainable and renewable energy production, such as wind turbines and photovoltaics. Power electronics are being used to interface renewable sources in order to maximize the energy yield, as well as smoothly integrate them within the grid. In many cases, power electronics are able to ensure a large amount of energy saving in pumps, compressors, and ventilation systems. This book explains the operations behind different renewable generation technologies in order to better prepare the reader for practical applications. Multiple chapters are included on the state-of-the-art and possible technology developments within the next 15 years. The book provides a comprehensive overview of the current renewable energy technology in terms of system configuration, power circuit usage, and control. It contains two design examples for small wind turbine system and PV power system, respectively, which are useful for real-life installation, as well as many computer simulation models.




PID and Predictive Control of Electrical Drives and Power Converters using MATLAB / Simulink


Book Description

A timely introduction to current research on PID and predictive control by one of the leading authors on the subject PID and Predictive Control of Electric Drives and Power Supplies using MATLAB/Simulink examines the classical control system strategies, such as PID control, feed-forward control and cascade control, which are widely used in current practice. The authors share their experiences in actual design and implementation of the control systems on laboratory test-beds, taking the reader from the fundamentals through to more sophisticated design and analysis. The book contains sections on closed-loop performance analysis in both frequency domain and time domain, presented to help the designer in selection of controller parameters and validation of the control system. Continuous-time model predictive control systems are designed for the drives and power supplies, and operational constraints are imposed in the design. Discrete-time model predictive control systems are designed based on the discretization of the physical models, which will appeal to readers who are more familiar with sampled-data control system. Soft sensors and observers will be discussed for low cost implementation. Resonant control of the electric drives and power supply will be discussed to deal with the problems of bias in sensors and unbalanced three phase AC currents. Brings together both classical control systems and predictive control systems in a logical style from introductory through to advanced levels Demonstrates how simulation and experimental results are used to support theoretical analysis and the proposed design algorithms MATLAB and Simulink tutorials are given in each chapter to show the readers how to take the theory to applications. Includes MATLAB and Simulink software using xPC Target for teaching purposes A companion website is available Researchers and industrial engineers; and graduate students on electrical engineering courses will find this a valuable resource.




Robust Control of DC-DC Converters


Book Description

DC-DC converters require negative feedback to provide a suitable output voltage or current for the load. Obtaining a stable output voltage or current in the presence of disturbances like input voltage changes and/or output load changes seems impossible without some form of control. This book shows how simple controllers such as Proportional-Integral (PI) can turn into a robust controller by correct selection of its parameters. Kharitonov's theorem is an important tool toward this end. This book consist of two parts. The first part shows how one can obtain the interval plant model of a DC-DC converter. The second part introduces the Kharitonov's theorem. Kharitonov's theorem is an analysis tool rather than a design tool. Some case studies show how it can be used as a design tool. The prerequisite for reading this book is a first course on feedback control theory and power electronics.