PowerFactory Applications for Power System Analysis


Book Description

This book presents a comprehensive set of guidelines and applications of DIgSILENT PowerFactory, an advanced power system simulation software package, for different types of power systems studies. Written by specialists in the field, it combines expertise and years of experience in the use of DIgSILENT PowerFactory with a deep understanding of power systems analysis. These complementary approaches therefore provide a fresh perspective on how to model, simulate and analyse power systems. It presents methodological approaches for modelling of system components, including both classical and non-conventional devices used in generation, transmission and distribution systems, discussing relevant assumptions and implications on performance assessment. This background is complemented with several guidelines for advanced use of DSL and DPL languages as well as for interfacing with other software packages, which is of great value for creating and performing different types of steady-state and dynamic performance simulation analysis. All employed test case studies are provided as supporting material to the reader to ease recreation of all examples presented in the book as well as to facilitate their use in other cases related to planning and operation studies. Providing an invaluable resource for the formal instruction of power system undergraduate/postgraduate students, this book is also a useful reference for engineers working in power system operation and planning.




Modelling and Simulation of Power Electronic Converter Dominated Power Systems in PowerFactory


Book Description

This book provides an overview of power electronic converters for numerical simulations based on DIgSILENT PowerFactory. It covers the working principles, key assumptions and implementation of models of different types of these power systems. The book is divided into three main parts: the first discusses high-voltage direct currents, while the second part examines distribution systems and micro-grids. Lastly, the third addresses the equipment and technologies used in modelling and simulation. Each chapter includes practical examples and exercises, and the accompanying software illustrates essential models, principles and performance using DIgSILENT PowerFactory. Exploring various current topics in the field of modelling power systems, this book will appeal to a variety of readers, ranging from students to practitioners.




Advanced Smart Grid Functionalities Based on PowerFactory


Book Description

This book consolidates some of the most promising advanced smart grid functionalities and provides a comprehensive set of guidelines for their implementation/evaluation using DIgSILENT Power Factory. It includes specific aspects of modeling, simulation and analysis, for example wide-area monitoring, visualization and control, dynamic capability rating, real-time load measurement and management, interfaces and co-simulation for modeling and simulation of hybrid systems. It also presents key advanced features of modeling and automation of calculations using PowerFactory, such as the use of domain-specific (DSL) and DIgSILENT Programming (DPL) languages, and utilizes a variety of methodologies including theoretical explanations, practical examples and guidelines. Providing a concise compilation of significant outcomes by experienced users and developers of this program, it is a valuable resource for postgraduate students and engineers working in power-system operation and planning.




Power System Analysis


Book Description

This is an introduction to power system analysis and design. The text contains fundamental concepts and modern topics with applications to real-world problems, and integrates MATLAB and SIMULINK throughout.




Power System Dynamics and Stability


Book Description

For a one-semester senior or beginning graduate level course in power system dynamics. This text begins with the fundamental laws for basic devices and systems in a mathematical modeling context. It includes systematic derivations of standard synchronous machine models with their fundamental controls. These individual models are interconnected for system analysis and simulation. Singular perturbation is used to derive and explain reduced-order models.




Integration of Renewable Energy Sources Into the Power Grid Through PowerFactory


Book Description

This book evaluates a number of serious technical challenges related to the integration of renewable energy sources into the power grid using the DIgSILENT PowerFactory power system simulation software package. It provides a fresh perspective on analyzing power systems according to renewable energy sources and how they affect power system performance in various situations. The book examines load flow, short-circuit, RMS simulation, power quality, and system reliability in the presence of renewable energy sources, and presents readers with the tools needed for modeling, simulation, and analysis for network planning. The book is a valuable resource for researchers, engineers, and students working to solve power system problems in the presence of renewable energy sources in power system operations and utilities.




Power System Protection in Smart Grid Environment


Book Description

With distributed generation interconnection power flow becoming bidirectional, culminating in network problems, smart grids aid in electricity generation, transmission, substations, distribution and consumption to achieve a system that is clean, safe (protected), secure, reliable, efficient, and sustainable. This book illustrates fault analysis, fuses, circuit breakers, instrument transformers, relay technology, transmission lines protection setting using DIGsILENT Power Factory. Intended audience is senior undergraduate and graduate students, and researchers in power systems, transmission and distribution, protection system broadly under electrical engineering.




Large-Scale System Analysis Under Uncertainty


Book Description

Discover a comprehensive set of tools and techniques for analyzing the impact of uncertainty on large-scale engineered systems. Providing accessible yet rigorous coverage, it showcases the theory through detailed case studies drawn from electric power application problems, including the impact of integration of renewable-based power generation in bulk power systems, the impact of corrupted measurement and communication devices in microgrid closed-loop controls, and the impact of components failures on the reliability of power supply systems. The case studies also serve as a guide on how to tackle similar problems that appear in other engineering application domains, including automotive and aerospace engineering. This is essential reading for academic researchers and graduate students in power systems engineering, and dynamic systems and control engineering.




Wind Power in Power Systems


Book Description

The second edition of the highly acclaimed Wind Power in Power Systems has been thoroughly revised and expanded to reflect the latest challenges associated with increasing wind power penetration levels. Since its first release, practical experiences with high wind power penetration levels have significantly increased. This book presents an overview of the lessons learned in integrating wind power into power systems and provides an outlook of the relevant issues and solutions to allow even higher wind power penetration levels. This includes the development of standard wind turbine simulation models. This extensive update has 23 brand new chapters in cutting-edge areas including offshore wind farms and storage options, performance validation and certification for grid codes, and the provision of reactive power and voltage control from wind power plants. Key features: Offers an international perspective on integrating a high penetration of wind power into the power system, from basic network interconnection to industry deregulation; Outlines the methodology and results of European and North American large-scale grid integration studies; Extensive practical experience from wind power and power system experts and transmission systems operators in Germany, Denmark, Spain, UK, Ireland, USA, China and New Zealand; Presents various wind turbine designs from the electrical perspective and models for their simulation, and discusses industry standards and world-wide grid codes, along with power quality issues; Considers concepts to increase penetration of wind power in power systems, from wind turbine, power plant and power system redesign to smart grid and storage solutions. Carefully edited for a highly coherent structure, this work remains an essential reference for power system engineers, transmission and distribution network operator and planner, wind turbine designers, wind project developers and wind energy consultants dealing with the integration of wind power into the distribution or transmission network. Up-to-date and comprehensive, it is also useful for graduate students, researchers, regulation authorities, and policy makers who work in the area of wind power and need to understand the relevant power system integration issues.




European Guide to Power System Testing


Book Description

This book is an open access book. This book provides an overview of the ERIGrid validation methodology for validating CPES, a holistic power system testing method. It introduces readers to corresponding simulation and laboratory-based tools, including co-simulation, real-time simulation, and hardware-in-the-loop. Selected test cases and validation examples are provided, in order to support the theory discussed. The book begins with an introduction to current power system testing methods and an overview of the ERIGrid system-level validation approach. It then moves on to discuss various validation methods, concepts and tools, including simulation and laboratory-based assessment methods. The book presents test cases and validation examples of the proposed methodologies and summarises the lessons learned from the holistic validation approach. In the final section of the book, the educational aspects of these methods, the outlook for the future, and overall conclusions are discussed. Given its scope, the book will be of interest to researchers, engineers, and laboratory personnel in the fields of power systems and smart grids, as well as undergraduate and graduate students studying related engineering topics.