Practical Approach to Exergy and Thermoeconomic Analyses of Industrial Processes


Book Description

Although the exergy method has been featured as the subject of many publishing papers in scientific and engineering journals and at conferences, very few comprehensive books on this subject have been published so far. Practical Approach to Exergy and Thermoeconomic Analyses of Industrial Processes details the exergetic and thermoeconomic analyses of industrial processes using Aspen Plus and a novel Microsoft Excel Application developed by the authors which can be applied to industrial processes across the board. Employing a practical approach to an innovative and complex energy process, every chapter contains extensive explanations of a complex and real case and numerous examples whose solution demonstrates the application of theory to a wide range of real and practical problems. Illustrations, tables and graphs support and illustrate the new methodology to build a deep understanding of the real employment of the fuel used and the cost formation and increase inside the process. Practical Approach to Exergy and Thermoeconomic Analyses of Industrial Processes provides users, students and practitioners of process analysis, power plant design and fuel use optimization, with a broad introduction and approach to computer aided process optimization. It also serves as a comprehensive guide to the operational application of the MHBT to real cases analysis.




Primary Exergy Cost of Goods and Services


Book Description

This book describes the Exergy-based Input – Output (ExIO) framework, a comprehensive methodology for assessing the primary fossil fuels requirements for the production of goods and services within a given economy from a lifecycle perspective. In the ExIO approach, exergy is assumed to be the best suited thermodynamic metric for characterizing fossil fuels. The mathematical formulation of ExIO is based on Input-Output analysis, which defines boundaries in time and space for any system or product analyzed, encompassing its entire lifecycle. The Hybrid-ExIO approach has been developed to increase the accuracy of results and to analyze energy systems in detail, leading to the definition of criteria and indicators for identifying and optimizing the primary fossil fuels requirements of system products. Lastly, the Bioeconomic ExIO model has been proposed to account for the side effects that the working hours required for producing goods and services have on the total primary fossil fuels consumption. As such, the book will be of considerable interest to both researchers and engineers in industry, offering them essential guidelines on the utilization of exergy and thermoeconomic analysis.




Advances in Thermodynamics and Circular Thermoeconomics


Book Description

This book on energy physics and energy efficiency discusses two essential components of energy physics: the fundamentals and the criteria. It covers the historical basis of Carnot models, the thermostatic cycles of double-function heat pumps and the optimization of thermomechanical engines, and discusses the results of various investigations, bringing together a number of previous works. The latter half of this book introduces the concept of "Circular Thermoeconomics" and assesses the physical costs of recycling waste in increasingly complex industrial processes. It then goes on to present "Relative Free Energy", allowing us to create a new mathematical theory of thermodynamic costs in order to diagnose malfunctions in thermal systems. The book shows the progression of knowledge on the existence of successive energy, power and efficiency, and pairs this with the economic aspects, which are already becoming linked to growing environmental concerns.




Application of Exergy


Book Description

The main scope of this study is to emphasize exergy efficiency in all fields of industry. The chapters collected in the book are contributed by invited researchers with a long-standing experience in different research areas. I hope that the material presented here is understandable to a wide audience, not only energy engineers but also scientists from various disciplines. The book contains seven chapters in three sections: (1) "General Information about Exergy," (2) "Exergy Applications," and (3) "Thermoeconomic Analysis." This book provides detailed and up-to-date evaluations in different areas written by academics with experience in their fields. It is anticipated that this book will make a scientific contribution to exergy workers, researchers, academics, PhD students, and other scientists in both the present and the future.




Exergy


Book Description

Exergy, Second Edition deals with exergy and its applications to various energy systems and applications as a potential tool for design, analysis and optimization, and its role in minimizing and/or eliminating environmental impacts and providing sustainable development. In this regard, several key topics ranging from the basics of the thermodynamic concepts to advanced exergy analysis techniques in a wide range of applications are covered as outlined in the contents. - Offers comprehensive coverage of exergy and its applications, along with the most up-to-date information in the area with recent developments - Connects exergy with three essential areas in terms of energy, environment and sustainable development - Provides a number of illustrative examples, practical applications, and case studies - Written in an easy-to-follow style, starting from the basics to advanced systems




Exergy


Book Description

Bridging the gap between concepts derived from Second Law of Thermodynamics and their application to Engineering practice, the property exergy and the exergy balance can be a tool for analyzing and improving the performance of energy conversion processes. With the exergy analysis it is possible to evaluate the performance of energy conversion processes not only on a thermodynamics basis but also by including production costs and environmental aspects and impacts of the studied processes. This comprehensive approach of the use of energy has, as one of the most important feature, the identification of sustainable ways of energy resources utilization. Based on the fundamentals of the exergy concept, its calculation, graphical representations and exergy balances evaluation, Exergy: Production Cost And Renewability describes the application of detailed exergy and thermoeconomic analysis to power plants and polygeneration systems, petroleum production and refining plants (including hydrogen production), chemical plants, biofuel production routes, combined production of ethanol and electricity, aircraft systems design, environmental impact mitigation processes and human body behavior. The presented case studies aim at providing students, researchers and engineers with guidelines to the utilization of the exergy and thermoeconomic analysis to model, simulate and optimize real processes and industrial plants.




Solar Receivers for Thermal Power Generation


Book Description

Solar Receivers for Thermal Power Generation: Fundamentals and Advanced Concepts looks at different Concentrated Solar Power (CSP) systems, their varying components, and the modeling and optimization of solar receivers. The book combines the detailed theory of receivers, all physical concepts in the process of converting solar radiation into electricity in CSP systems, and the main components of CSP systems, including solar concentrators, thermal receivers and power blocks. Main properties and working principles are addressed, along with the principles of solar resources and energy output of CSP systems and solar radiation. By covering different types and designs of solar receivers, heat transfer fluids, operating temperatures, and different techniques used in modeling and optimizing solar receivers, this book is targeted at academics engaged in sustainable energy engineering research and students specializing in power plant solarization. - Features methods of modeling the thermal performance of different solar receivers - Provides step-by-step linchpins to advanced theory and practice - Includes global case studies surrounding progress in the development of solar receivers




Modern Methods of Construction Design


Book Description

This book has been created on the basis of contributions to the 54th International Conference of Machine Design Departments that was held for the 60th anniversary of Technical University of Liberec. This international conference which follows a tradition going back more than 50 years is one of the longest-running series of conferences held in central Europe, dealing with methods and applications in machine design. The main aim of the conference was to provide an international forum where experts, researchers, engineers and industrial practitioners, managers and Ph.D. students could meet, share their experiences and present the results of their efforts in the broad field of machine design and related fields. The book has seven chapters which focus on new knowledge of machine design, optimization, tribology, experimental methods and measuring, engineering analyses and product innovation. Authors presented new design methods of machine parts and more complex assemblies with the help of numerical methods such as FEM. Research, measurements and studies of new materials, including composites for energy-efficient constructions are also described. The book also includes solutions and results useful for optimization and innovation of complex design problems in various industries.




Membrane Distillation


Book Description

This book is a printed edition of the Special Issue "Membrane Distillation" that was published in Applied Sciences