Practical Geolocation for Electronic Warfare Using MATLAB


Book Description

This text explores the practical realities that arise from the employment of geolocation for electronic warfare in real-world systems, including position of the target, errors in sensor position, orientation, or velocity, and the impact of repeated measurements over time. The problems solved in the book have direct relevance to accurately locating and tracking UAVs, planes, and ships. As a companion volume to the author’s previous book Emitter Detection and Geolocation for Electronic Warfare (Artech House, 2019), this book goes in depth on real-world complications that include: working within and converting between different coordinate systems, incorporation of prior information about targets, sensor uncertainties, the use of multiple snapshots over time, and estimating the current position and velocity of moving targets. The e-book version described here includes several links to software and videos that can be downloaded from the publicly available Git repository. The book also includes all MATLAB code necessary to develop novel algorithms that allow comparisons to classical techniques and enable you to account for errors in timing, position, velocity, or orientation of the sensors. With its unique and updated coverage of detailed geolocation techniques and data, and easy linkable access to additional software and videos, this is a must-have book for engineers and electronic warfare practitioners who need the best information available on the development or employment of geolocation algorithms. It is also a useful teaching resource for faculty and students in engineering departments covering RF signal processing topics, as well as anyone interested in novel applications of SDR’s and UAVs.




Practical Geolocation for Electronic Warfare Using MATLAB


Book Description

This text explores the practical realities that arise from the employment of geolocation for electronic warfare in real-world systems, including position of the target, errors in sensor position, orientation, or velocity, and the impact of repeated measurements over time. The problems solved in the book have direct relevance to accurately locating and tracking UAVs, planes, and ships. As a companion volume to the author's previous book Emitter Detection and Geolocation for Electronic Warfare (Artech House, 2019), this book goes in depth on real-world complications that include: working within and converting between different coordinate systems, incorporation of prior information about targets, sensor uncertainties, the use of multiple snapshots over time, and estimating the current position and velocity of moving targets. The e-book version described here includes several links to software and videos that can be downloaded from the publicly available Git repository. The book also includes all MATLAB code necessary to develop novel algorithms that allow comparisons to classical techniques and enable you to account for errors in timing, position, velocity, or orientation of the sensors.




Emitter Detection and Geolocation for Electronic Warfare


Book Description

This comprehensive resource provides theoretical formulation for detecting and geolocating non-cooperative emitters. Implementation of geolocation algorithms are discussed, as well as performance prediction of a hypothetical passive location system for systems analysis or vulnerability calculation. Comparison of novel direction finding and geolocation algorithms to classical forms are also included. Rooted in statistical signal processing and array processing theory, this book also provides an overview of the application of novel detection and estimation algorithms to real world problems in EW. The book is divided into three parts: detection, angle of arrival estimation, and geolocation. Each section begins with an introductory chapter covering the relevant signal processing theory (either detection or estimation), then provides a series of chapters covering specific methods to achieve the desired end-product. MATLAB® code is provided to assist readers with relevant probability and statistics, RF propagation, atmospheric absorption, and noise, giving readers an understanding of the implementation of the algorithms in the book, as well as developing new approaches to solving problems. Packed with problem sets and examples, this book strikes a balance between introductory texts and reference manuals, making it useful for novice as well as advanced practitioners.




Digital Filters


Book Description

The book is not an exposition on digital signal processing (DSP) but rather a treatise on digital filters. The material and coverage is comprehensive, presented in a consistent that first develops topics and subtopics in terms it their purpose, relationship to other core ideas, theoretical and conceptual framework, and finally instruction in the implementation of digital filter devices. Each major study is supported by Matlab-enabled activities and examples, with each Chapter culminating in a comprehensive design case study.




Electronic Warfare Target Location Methods, Second Edition


Book Description

Worldwide growth of space communications has caused a rapid increase in the number of satellites operating in geostationary orbits, causing overcrowded orbits. This practical resource is designed to help professionals overcome this problem. This timely book provides a solid understanding of the use of radio interferometers for tracking and monitoring satellites in overcrowded environments. Practitioners learn the fundamentals of radio interferometer hardware, including antennas, receiving equipment, signal processing and phase detection, and measurement accuracies. This in-depth volume describes the nature of the targets to be tracked by the interferometer, helping to clarify the movement of target satellites and what specific information has to be caught by the interferometer. Additionally, engineers find details on applications to practical cases of satellite tracking, covering different types of interferometers, recent technical developments, orbital monitoring and safety control.







Communication Systems Principles Using MATLAB


Book Description

Discover the basic telecommunications systems principles in an accessible learn-by-doing format Communication Systems Principles Using MATLAB covers a variety of systems principles in telecommunications in an accessible format without the need to master a large body of theory. The text puts the focus on topics such as radio and wireless modulation, reception and transmission, wired networks and fiber optic communications. The book also explores packet networks and TCP/IP as well as digital source and channel coding, and the fundamentals of data encryption. Since MATLAB® is widely used by telecommunications engineers, it was chosen as the vehicle to demonstrate many of the basic ideas, with code examples presented in every chapter. The text addresses digital communications with coverage of packet-switched networks. Many fundamental concepts such as routing via shortest-path are introduced with simple and concrete examples. The treatment of advanced telecommunications topics extends to OFDM for wireless modulation, and public-key exchange algorithms for data encryption. Throughout the book, the author puts the emphasis on understanding rather than memorization. The text also: Includes many useful take-home skills that can be honed while studying each aspect of telecommunications Offers a coding and experimentation approach with many real-world examples provided Gives information on the underlying theory in order to better understand conceptual developments Suggests a valuable learn-by-doing approach to the topic Written for students of telecommunications engineering, Communication Systems Principles Using MATLAB® is the hands-on resource for mastering the basic concepts of telecommunications in a learn-by-doing format.




Fundamentals of Graphics Using MATLAB


Book Description

This book introduces fundamental concepts and principles of 2D and 3D graphics and is written for undergraduate and postgraduate students of computer science, graphics, multimedia, and data science. It demonstrates the use of MATLAB® programming for solving problems related to graphics and discusses a variety of visualization tools to generate graphs and plots. The book covers important concepts like transformation, projection, surface generation, parametric representation, curve fitting, interpolation, vector representation, and texture mapping, all of which can be used in a wide variety of educational and research fields. Theoretical concepts are illustrated using a large number of practical examples and programming codes, which can be used to visualize and verify the results. Key Features: Covers fundamental concepts and principles of 2D and 3D graphics Demonstrates the use of MATLAB® programming for solving problems on graphics Provides MATLAB® codes as answers to specific numerical problems Provides codes in a simple copy and execute format for the novice learner Focuses on learning through visual representation with extensive use of graphs and plots Helps the reader gain in-depth knowledge about the subject matter through practical examples Contains review questions and practice problems with answers for self-evaluation




Computer Applications in Mechanics of Materials Using MATLAB


Book Description

Focusing on physical applications in mechanics, the book's goal is to explore the benefits of computer usage in problem solving. Presents numerous example problems which demonstrate each program. Includes several thousand lines of carefully structured MATLAB code suitable for detailed study.




Bistatic SAR Data Processing Algorithms


Book Description

BISTATIC SAR DATA PROCESSING ALGORITHMS Synthetic Aperture Radar (SAR) is critical for remote sensing. It works day and night, in good weather or bad. Bistatic SAR is a new kind of SAR system, where the transmitter and receiver are placed on two separate platforms. Bistatic SAR is one of the most important trends in SAR development, as the technology renders SAR more flexible and safer when used in military environments. Imaging is one of the most difficult and important aspects of bistatic SAR data processing. Although traditional SAR signal processing is fully developed, bistatic SAR has a more complex system structure, so signal processing is more challenging. Focusing on imaging aspects of bistatic SAR signal processing, this book covers resolution analysis, echo generation methods, imaging algorithms, imaging parameter estimation, and motion compensation methods. Gives a general and updated framework for image formation using signal processing aspects Starts with an introduction to traditional SAR before moving on to more advanced topics Offers readers a range of exhaustive tools to process signals and form images Provides a solid reference for the imaging of other complicated SAR MATLAB® codes are available from the book’s companion site The book is ideal for researchers and engineers in SAR signal and data processing, as well as those working in bistatic and multistatic radar imaging, and in the radar sciences. Graduate students with a background in radar who are interested in bistatic and multistatic radar will find this book a helpful reference.