Practical LED Packaging Technology


Book Description

This book comprises of 8 chapters. The chapter 1 starts with a history review LED chip based on III-V compounds and it materials as well as effective benefits of LEDs in comparing with those traditional lighting sources and ends up current market and trends. Chapter 2 provides an overview of the power supply for LED module. The chapter explains advantage and disadvantage of the various topology for power sources. Chapter 3 provides simulation method to characterize LED thermal performance. The characteristics of LEDs and its packaging reliability are presented in chapter 4. Chapter 5 gives an overview and basic knowledge of LED thermal characteristic with measurement principles. Chapter 6 and 7 provides fabrication, packaging, and measurement of the nano-pore silicon-based packaged module in high power applications. Final chapter discusses about next generation LEDs in future applications.




LED Packaging Technologies


Book Description

LED Packaging Technologies Up-to-date practitioner’s guide on LED packaging technologies, with application examples from relevant industries, historical insight, and outlook LED Packaging Technologies provides expert insight into current and future trends in LED packaging technologies, discussing the fundamentals of LED packaging technologies, from electrical contact design, thermal management and optical emission, and extraction, to manufacturing technologies, including the JEDEC testing standards, followed by accounts on the main applications of these LED packages in the automotive, consumer electronics, and lighting industries. LED Packaging Technologies includes information on: History of primitive lighting in human civilization to the invention of modern LEDs based lighting, and historic evolution of LED packaging technology Basic light emission and extraction technology in LED packages, covering package design impacting light emission and extraction Medical industry applications of LEDs, especially in healthcare treatments, such as in skin rejuvenation and wound healing and closures Quantum confinement phenomena and size-dependent optical properties of quantum dots, and the advancement of future quantum dot LEDs Covering the fundamentals, design, and manufacturing of LED packaging technology and assisting in removing some of the barriers in the development of LED packaging and new applications, LED Packaging Technologies is an essential source of information for engineers in the LED and lighting industries, as well as researchers in academia.




LED Packaging for Lighting Applications


Book Description

Since the first light-emitting diode (LED) was invented by Holonyak and Bevacqua in 1962, LEDs have made remarkable progress in the past few decades with the rapid development of epitaxy growth, chip design and manufacture, packaging structure, processes, and packaging materials. LEDs have superior characteristics such as high efficiency, small size, long life, low power consumption, and high reliability. The market for white LED is growing rapidly in various applications. It has been widely accepted that white LEDs will be the fourth illumination source to substitute the incandescent, fluorescent, and high-pressure sodium lamps. With the development of LED chip and packaging technologies, the efficiency of high power white LED will broaden the application markets of LEDs while changing the lighting concepts of our lives. In LED Packaging for Lighting Applications, Professors Liu and Luo cover the full spectrum of design, manufacturing, and testing. Many concepts are proposed for the first time, and readers will benefit from the concurrent engineering and co-design approaches to advanced engineering design of LED products. One of the only books to cover LEDs from package design to manufacturing to testing Focuses on the design of LED packaging and its applications such as road lights Includes design methods and experiences necessary for LED engineers, especially optical and thermal design Introduces novel LED packaging structures and manufacturing processes, such as ASLP Covers reliability considerations, the most challenging problem for the LED industry Provides measurement and testing standards, which are critical for LED development, for both LED and LED fixtures Codes and demonstrations available from the book’s Companion Website This book is ideal for practicing engineers working in design or packaging at LED companies and graduate students preparing for work in industry. This book also provides a helpful introduction for advanced undergraduates, graduates, researchers, lighting designers, and product managers interested in the fundamentals of LED design and production. Color version of selected figures can be found at www.wiley.com/go/liu/led




From LED to Solid State Lighting


Book Description

FROM LED TO SOLID STATE LIGHTING A comprehensive and practical reference complete with hands-on exercises and experimental data In From LED to Solid State Lighting: Principles, Materials, Packaging, Characterization, and Applications, accomplished mechanical engineers Shi-Wei Ricky Lee, Jeffery C. C. Lo, Mian Tao, and Huaiyu Ye deliver a practical overview of the design and construction of LED lighting modules, from the fabrication of the LED chip to the LED modules incorporated in complete LED lighting fixtures. The distinguished authors discuss the major advantages of solid-state lighting, including energy savings, environmental friendliness, and lengthy operational life, as well as the contributions offered by the packaging of light-emitting diodes in the pursuit of these features. Readers will discover presentations of the technical issues that arise in packaging LED components, like interconnection, phosphor deposition, and encapsulation. They’ll also find insightful elaborations on optical design, analysis, and characterization. Discussions of LED applications, technology roadmaps, and IP issues round out the included material. This important book also includes: Thorough introductions to lighting, photometry, and colorimetry, the fundamentals of light-emitting diodes, and the fabrication of LED wafers and chips Practical discussions of the packaging of LED chips, wafer-level packaging of LED arrays, and optical and electrical characterization Comprehensive explorations of board-level assembly and LED modules and optical and electrical characterization In-depth examinations of thermal management, reliability engineering for LED packaging, and applications for general lighting Perfect for post-graduate students and practicing engineers studying or working in the field of LED manufacturing for solid state lighting applications, From LED to Solid State Lighting: Principles, Materials, Packaging, Characterization, and Applications is also an indispensable resource for managers and technicians seeking a one-stop guide to the subject.




Practical Lighting Design with LEDs


Book Description

The essential how-to guide to designing and building LED systems, revised and updated The second edition of Practical Lighting Design with LEDs has been revised and updated to provide the most current information for developing light-emitting diodes products. The authors, noted authorities in the field, offer a review of the most relevant topics including optical performance, materials, thermal design and modeling and measurement. Comprehensive in scope, the text covers all the information needed to design LEDs into end products. The user-friendly text also contains numerous drawings and schematics that show how things such as measurements are actually made, and show how circuits actually work. Designed to be practical, the text includes myriad notes and illustrative examples that give pointers and how-to guides on many of the book's topics. In addition, the book’s equations are used only for practical calculations, and are kept at the level of high-school algebra. This thoroughly expanded second edition offers: New chapters on the design of an LED flashlight, USB light, automotive taillight, and LED light bulbs A practical and user-friendly guide with dozens of new illustrations The nitty-gritty, day-to-day engineering and systems used to design and build complete LED systems An essential resource on the cutting-edge technology of Light-Emitting Diodes Practical Lighting Design with LEDs helps engineers and managers meet the demand for the surge in usage for products using light-emitting diodes with a practical guide that takes them through the relevant fields of light, electronic and thermal design.




Reliability and Failure Analysis of High-Power LED Packaging


Book Description

Reliability and Failure Analysis of High-Power LED Packaging provides fundamental understanding of the reliability and failure analysis of materials for high-power LED packaging, with the ultimate goal of enabling new packaging materials. This book describes the limitations of the present reliability standards in determining the lifetime of high-power LEDs due to the lack of deep understanding of the packaging materials and their interaction with each other. Many new failure mechanisms are investigated and presented with consideration of the different stresses imposed by varying environmental conditions. The detailed failure mechanisms are unique to this book and will provide insights for readers regarding the possible failure mechanisms in high-power LEDs. The authors also show the importance of simulation in understanding the hidden failure mechanisms in LEDs. Along with simulation, the use of various destructive and non-destructive tools such as C-SAM, SEM, FTIR, Optical Microscopy, etc. in investigation of the causes of LED failures are reviewed. The advancement of LEDs in the last two decades has opened vast new applications for LEDs which also has led to harsher stress conditions for high-power LEDs. Thus, existing standards and reliability tests need to be revised to meet the new demands for high-power LEDs. - Introduces the failure mechanisms of high-power LEDs under varying environmental conditions and methods of how to test, simulate, and predict them - Describes the chemistry underlying the material degradation and its impact on LEDs - Discusses future directions of new packaging materials for improved performance and reliability of high-power LEDs




LED Lighting


Book Description

Promoting the design, application and evaluation of visually and electrically effective LED light sources and luminaires for general indoor lighting as well as outdoor and vehicle lighting, this book combines the knowledge of LED lighting technology with human perceptual aspects for lighting scientists and engineers. After an introduction to the human visual system and current radiometry, photometry and color science, the basics of LED chip and phosphor technology are described followed by specific issues of LED radiometry and the optical, thermal and electric modeling of LEDs. This is supplemented by the relevant practical issues of pulsed LEDs, remote phosphor LEDs and the aging of LED light sources. Relevant human visual aspects closely related to LED technology are described in detail for the photopic and the mesopic range of vision, including color rendering, binning, whiteness, Circadian issues, as well as flicker perception, brightness, visual performance, conspicuity and disability glare. The topic of LED luminaires is discussed in a separate chapter, including retrofit LED lamps, LED-based road and street luminaires and LED luminaires for museum and school lighting. Specific sections are devoted to the modularity of LED luminaires, their aging and the planning and evaluation methods of new LED installations. The whole is rounded off by a summary and a look towards future developments.




Freeform Optics for LED Packages and Applications


Book Description

A practical introduction to state-of-the-art freeform optics design for LED packages and applications By affording designers the freedom to create complex, aspherical optical surfaces with minimal or no aberrations, freeform design transcends the constraints imposed by hundreds of years of optics design and fabrication. Combining unprecedented design freedom with precise light irradiation control, freeform optics design is also revolutionizing the design and manufacture of high quality LED lighting. The first and only book of its kind, Freeform Optics for LED Packages and Applications helps put readers at the forefront of the freeform optics revolution. Designed to function as both an authoritative review of the current state of the industry and a practical introduction to advanced optical design for LED lighting, this book makes learning and mastering freeform optics skills simpler and easier than ever before with: Real-world examples and case studies systematically describing an array of algorithms and designs—from new freeform algorithms to design methods to advanced optical designs Coding for all freeform optics algorithms covered—makes it easier and more convenient to start developing points of freeform optics and construct lenses or reflectors, right away Case studies of a range of products, including designs for a freeform optics LED bulb, an LED spotlight, LED street lights, an LED BLU, and many more Freeform Optics for LED Packages and Applications is must-reading for optical design engineers and LED researchers, as well as advanced-level students with an interest in LED lighting. It is also an indispensable working resource design practitioners within the LED lighting industry.




Packaging Technology and Engineering


Book Description

This book covers the chemistry, physics, materials science, engineering, and therapeutic aspects of many different types of packaging materials, emphasizing throughout the applicability of various aspects of packaging science and technology. It also provides a simultaneous discussion of interrelated fields, and addresses the universal issues within these fields’ application areas. Intended as a technical reference and as a study aid, it is relevant to anyone who studies or uses packaging or packaging materials. Packaging Technology and Engineering: Pharmaceutical, Medical and Food Applications begins with an overview of the history of the topic. It then offers chapters on the methods of obtaining raw materials, the chemistry of polymeric and non-polymeric packaging materials, physico-chemical quality parameters, and the manufacturing of packaging. Other topics look at: additives, use, suppliers, safety and environmental concerns, regulation, anti-fraud activities, new trends, and the future of packaging technology. The book also features numerous problems and worked solutions to aid student comprehension. Covers packaging and packaging materials, their properties and technologies Addresses the chemical engineering, physics, and chemistry of packaging materials, and the individual requirements for food, pharmaceutical, and medical device packaging Includes current issues such as environmental concerns and sustainability, recycling and after-use, anti-counterfeiting technology, and packaging regulations and guidelines Packaging Technology and Engineering: Pharmaceutical, Medical and Food Applications will appeal to all packaging technologists, scientists, and engineers in industry, and in regulatory agencies. It is also an excellent book for advanced students studying packaging courses, within pharmacy, pharmaceutical sciences, chemical sciences, biomedical sciences, medical sciences, engineering, product design and technology, and food science/technology.




Thermal Management for Opto-electronics Packaging and Applications


Book Description

A systematic guide to the theory, applications, and design of thermal management for LED packaging In Thermal Management for Opto-electronics Packaging and Applications, a team of distinguished engineers and researchers deliver an authoritative discussion of the fundamental theory and practical design required for LED product development. Readers will get a solid grounding in thermal management strategies and find up-to-date coverage of heat transfer fundamentals, thermal modeling, and thermal simulation and design. The authors explain cooling technologies and testing techniques that will help the reader evaluate device performance and accelerate the design and manufacturing cycle. In this all-inclusive guide to LED package thermal management, the book provides the latest advances in thermal engineering design and opto-electronic devices and systems. The book also includes: A thorough introduction to thermal conduction and solutions, including discussions of thermal resistance and high thermal conductivity materials Comprehensive explorations of thermal radiation and solutions, including angular- and spectra-regulation radiative cooling Practical discussions of thermally enhanced thermal interfacial materials (TIMs) Complete treatments of hybrid thermal management in downhole devices Perfect for engineers, researchers, and industry professionals in the fields of LED packaging and heat transfer, Thermal Management for Opto-electronics Packaging and Applications will also benefit advanced students focusing on the design of LED product design.