Fundamentals of Numerical Weather Prediction


Book Description

Numerical models have become essential tools in environmental science, particularly in weather forecasting and climate prediction. This book provides a comprehensive overview of the techniques used in these fields, with emphasis on the design of the most recent numerical models of the atmosphere. It presents a short history of numerical weather prediction and its evolution, before describing the various model equations and how to solve them numerically. It outlines the main elements of a meteorological forecast suite, and the theory is illustrated throughout with practical examples of operational models and parameterizations of physical processes. This book is founded on the author's many years of experience, as a scientist at Météo-France and teaching university-level courses. It is a practical and accessible textbook for graduate courses and a handy resource for researchers and professionals in atmospheric physics, meteorology and climatology, as well as the related disciplines of fluid dynamics, hydrology and oceanography.







Practical Meteorology


Book Description

A quantitative introduction to atmospheric science for students and professionals who want to understand and apply basic meteorological concepts but who are not ready for calculus.




The Emergence of Numerical Weather Prediction: Richardson's Dream


Book Description

This book, first published in 2006, is a history of weather forecasting for researchers, graduate students and professionals in numerical weather forecasting.




Numerical Weather and Climate Prediction


Book Description

This textbook provides a comprehensive yet accessible treatment of weather and climate prediction, for graduate students, researchers and professionals. It teaches the strengths, weaknesses and best practices for the use of atmospheric models. It is ideal for the many scientists who use such models across a wide variety of applications. The book describes the different numerical methods, data assimilation, ensemble methods, predictability, land-surface modeling, climate modeling and downscaling, computational fluid-dynamics models, experimental designs in model-based research, verification methods, operational prediction, and special applications such as air-quality modeling and flood prediction. This volume will satisfy everyone who needs to know about atmospheric modeling for use in research or operations. It is ideal both as a textbook for a course on weather and climate prediction and as a reference text for researchers and professionals from a range of backgrounds: atmospheric science, meteorology, climatology, environmental science, geography, and geophysical fluid mechanics/dynamics.




An Introduction to Numerical Weather Prediction Techniques


Book Description

An Introduction to Numerical Weather Prediction Techniques is unique in the meteorological field as it presents for the first time theories and software of complex dynamical and physical processes required for numerical modeling. It was first prepared as a manual for the training of the World Meteorological Organization's programs at a similar level. This new book updates these exercises and also includes the latest data sets. This book covers important aspects of numerical weather prediction techniques required at an introductory level. These techniques, ranging from simple one-dimensional space derivative to complex numerical models, are first described in theory and for most cases supported by fully tested computational software. The text discusses the fundamental physical parameterizations needed in numerical weather models, such as cumulus convection, radiative transfers, and surface energy fluxes calculations. The book gives the user all the necessary elements to build a numerical model. An Introduction to Numerical Weather Prediction Techniques is rich in illustrations, especially tables showing outputs from each individual algorithm presented. Selected figures using actual meteorological data are also used. This book is primarily intended for senior-level undergraduates and first-year graduate students in meteorology. It is also excellent for individual scientists who wish to use the book for self-study. Scientists dealing with geophysical data analysis or predictive models will find this book filled with useful techniques and data-processing algorithms.




Numerical Weather and Climate Prediction


Book Description

This textbook provides a comprehensive yet accessible treatment of weather and climate prediction, for graduate students, researchers and professionals. It teaches the strengths, weaknesses and best practices for the use of atmospheric models. It is ideal for the many scientists who use such models across a wide variety of applications. The book describes the different numerical methods, data assimilation, ensemble methods, predictability, land-surface modeling, climate modeling and downscaling, computational fluid-dynamics models, experimental designs in model-based research, verification methods, operational prediction, and special applications such as air-quality modeling and flood prediction. This volume will satisfy everyone who needs to know about atmospheric modeling for use in research or operations. It is ideal both as a textbook for a course on weather and climate prediction and as a reference text for researchers and professionals from a range of backgrounds: atmospheric science, meteorology, climatology, environmental science, geography, and geophysical fluid mechanics/dynamics.




Uncertainties in Numerical Weather Prediction


Book Description

Uncertainties in Numerical Weather Prediction is a comprehensive work on the most current understandings of uncertainties and predictability in numerical simulations of the atmosphere. It provides general knowledge on all aspects of uncertainties in the weather prediction models in a single, easy to use reference. The book illustrates particular uncertainties in observations and data assimilation, as well as the errors associated with numerical integration methods. Stochastic methods in parameterization of subgrid processes are also assessed, as are uncertainties associated with surface-atmosphere exchange, orographic flows and processes in the atmospheric boundary layer. Through a better understanding of the uncertainties to watch for, readers will be able to produce more precise and accurate forecasts. This is an essential work for anyone who wants to improve the accuracy of weather and climate forecasting and interested parties developing tools to enhance the quality of such forecasts. Provides a comprehensive overview of the state of numerical weather prediction at spatial scales, from hundreds of meters, to thousands of kilometers Focuses on short-term 1-15 day atmospheric predictions, with some coverage appropriate for longer-term forecasts Includes references to climate prediction models to allow applications of these techniques for climate simulations




Weather Analysis and Forecasting


Book Description

Weather Analysis and Forecasting is a practical guide to using potential vorticity fields and water vapor imagery from satellites to elucidate complex weather patterns and train meteorologists to improve operational forecasting. In particular, it details the use of the close relationship between satellite imagery and the potential vorticity fields in the upper troposphere and lower stratosphere. It shows how to interpret water vapor patterns in terms of dynamical processes in the atmosphere and their relation to diagnostics available from weather prediction models. The book explores topics including: a dynamical view of synoptic development; the interpretation problem of satellite water vapor imagery; practical use of water vapor imagery and dynamical fields; significant water vapor imagery features associated with synoptic dynamical structures; and use of water vapor imagery for assessing NWP model behavior and improving forecasts. Applications are illustrated with color images based on real meteorological situations. The book's step-by-step pedagogy makes this an essential training manual for forecasters in meteorological services worldwide, and a valuable text for graduate students in atmospheric physics and satellite meteorology. * Shows how to analyze current satellite images for assessing weather models' behavior and improving forecasts * Provides step-by-step pedagogy for understanding and interpreting meteorological processes * Includes full-color throughout to highlight "real-world" models, patterns, and examples




Statistical Postprocessing of Ensemble Forecasts


Book Description

Statistical Postprocessing of Ensemble Forecasts brings together chapters contributed by international subject-matter experts describing the current state of the art in the statistical postprocessing of ensemble forecasts. The book illustrates the use of these methods in several important applications including weather, hydrological and climate forecasts, and renewable energy forecasting. After an introductory section on ensemble forecasts and prediction systems, the second section of the book is devoted to exposition of the methods available for statistical postprocessing of ensemble forecasts: univariate and multivariate ensemble postprocessing are first reviewed by Wilks (Chapters 3), then Schefzik and Möller (Chapter 4), and the more specialized perspective necessary for postprocessing forecasts for extremes is presented by Friederichs, Wahl, and Buschow (Chapter 5). The second section concludes with a discussion of forecast verification methods devised specifically for evaluation of ensemble forecasts (Chapter 6 by Thorarinsdottir and Schuhen). The third section of this book is devoted to applications of ensemble postprocessing. Practical aspects of ensemble postprocessing are first detailed in Chapter 7 (Hamill), including an extended and illustrative case study. Chapters 8 (Hemri), 9 (Pinson and Messner), and 10 (Van Schaeybroeck and Vannitsem) discuss ensemble postprocessing specifically for hydrological applications, postprocessing in support of renewable energy applications, and postprocessing of long-range forecasts from months to decades. Finally, Chapter 11 (Messner) provides a guide to the ensemble-postprocessing software available in the R programming language, which should greatly help readers implement many of the ideas presented in this book. Edited by three experts with strong and complementary expertise in statistical postprocessing of ensemble forecasts, this book assesses the new and rapidly developing field of ensemble forecast postprocessing as an extension of the use of statistical corrections to traditional deterministic forecasts. Statistical Postprocessing of Ensemble Forecasts is an essential resource for researchers, operational practitioners, and students in weather, seasonal, and climate forecasting, as well as users of such forecasts in fields involving renewable energy, conventional energy, hydrology, environmental engineering, and agriculture. - Consolidates, for the first time, the methodologies and applications of ensemble forecasts in one succinct place - Provides real-world examples of methods used to formulate forecasts - Presents the tools needed to make the best use of multiple model forecasts in a timely and efficient manner