Predicting Sooting Tendencies from Chemical Structure with Experimental and Theoretical Insight


Book Description

Particulate matter (PM) emissions from internal combustion engines negatively impact public health and global climate. These problems are exacerbated by newer gasoline direct injection engines, which are more fuel-efficient, but also produce more soot than traditional spark ignited engines. Reducing soot formation is therefore of paramount importance in the development of new fuels. A fuel's sooting tendency is a quantitative parameter that describes the sooting behavior of a pure compound or fuel mixture. The yield sooting index (YSI), developed by McEnally and Pfefferle, accurately measures sooting tendencies using small sample quantities. Using an experimental sooting tendency database, we have developed a predictive model for sooting behavior from a quantitative structure-activity relationship (QSAR). It was developed so that input molecules are first decomposed into individual carbon-type fragments for which the sooting tendency contribution can be assigned based on a Bayesian linear regression against the experimental database. The model's predictive accuracy is comparable to its training performance using leave-one-out cross-validation. We have used this model to provide quantitative insights into the effects of chemical structure on soot formation, but excitingly, we have also been able to readily identify the presence of more complicated kinetic sooting mechanisms for structures which are extreme outliers. Oxygenated aromatics can be produced readily from biomass as renewable sources and oxygenated aromatics with very similar structures tend to have a much lower sooting tendency, for example methoxybenzene (anisole, 107), 2-methylphenol (m-cresol, 103), 2-ethylphenol (120), 3-ethylphenol (138) and 1-phenylethanol (142). Thus, the presence of just one oxygen atom in an aromatic compound can drastically alter the reaction pathways leading to soot precursors. We have applied density functional theory (DFT) calculations and flow reactor experiments to examine how oxygenation alters reaction pathways in a combustion environment. This study has allowed us to gain understanding on how the location of an oxygenated functional group influences soot formation. Our work provides a blueprint for the design of oxygenated fuels from biomass, which minimize the production of soot in low oxygen environments.




The Yaws Handbook of Thermodynamic Properties for Hydrocarbons and Chemicals


Book Description

Petroleum and chemical engineers are constantly looking for reliable data yet don’t have the time to search through multiple sources and articles to get the most accurate pieces of data. The Yaws Handbook of Thermodynamic Properties for Hydrocarbons and Chemicals, 2nd edition brings a one-stop database reference for engineers to quickly gain access on over 12,000 compounds, simple and complex fluids, and an extensive list of properties – all to validate and improve on their thermodynamic modeling. Enhanced with eight new chapters covering more equation of state parameters, Yaws’ product continues to remain a go-to source to crosscheck critical properties available on process simulators or PVT software and estimate these properties based on the group contribution methods described in the different chapters. The Yaws Handbook of Thermodynamic Properties for Hydrocarbons and Chemicals, 2nd edition stands as the trusted database to optimize petrochemical processes, equipment, and operations. Provides a reliable database reference for thermodynamic properties, even varied by temperature, as well as simple and complex fluids, mixtures, and property calculations Updated with eight additional new chapters covering a modern platform of practical applications in modelling both pure fluids and mixtures with cubic equations of state Delivers accurate and quick options and solutions to size or simulate petrochemical processes and develop better predictive models




Bulletin of the Atomic Scientists


Book Description

The Bulletin of the Atomic Scientists is the premier public resource on scientific and technological developments that impact global security. Founded by Manhattan Project Scientists, the Bulletin's iconic "Doomsday Clock" stimulates solutions for a safer world.










Social Science Research


Book Description

This book is designed to introduce doctoral and graduate students to the process of conducting scientific research in the social sciences, business, education, public health, and related disciplines. It is a one-stop, comprehensive, and compact source for foundational concepts in behavioral research, and can serve as a stand-alone text or as a supplement to research readings in any doctoral seminar or research methods class. This book is currently used as a research text at universities on six continents and will shortly be available in nine different languages.




Soot Formation in Combustion


Book Description

Soot Formation in Combustion represents an up-to-date overview. The contributions trace back to the 1991 Heidelberg symposium entitled "Mechanism and Models of Soot Formation" and have all been reedited by Prof. Bockhorn in close contact with the original authors. The book gives an easy introduction to the field for newcomers, and provides detailed treatments for the specialists. The following list of contents illustrates the topics under review:







Fuel Effects on Operability of Aircraft Gas Turbine Combustors


Book Description

In summarizing the results obtained in the first five years of the National Jet Fuel Combustion Program (NJFCP), this book demonstrates that there is still much to be learned about the combustion of alternative jet fuels.




Surfing Uncertainty


Book Description

Exciting new theories in neuroscience, psychology, and artificial intelligence are revealing minds like ours as predictive minds, forever trying to guess the incoming streams of sensory stimulation before they arrive. In this up-to-the-minute treatment, philosopher and cognitive scientist Andy Clark explores new ways of thinking about perception, action, and the embodied mind.