Proceedings of International Conference of Aerospace and Mechanical Engineering 2019


Book Description

This book presents selected papers from the International Conference of Aerospace and Mechanical Engineering 2019 (AeroMech 2019), held at the Universiti Sains Malaysia's School of Aerospace Engineering. Sharing new innovations and discoveries concerning the Fourth Industrial Revolution (4IR), with a focus on 3D printing, big data analytics, Internet of Things, advanced human-machine interfaces, smart sensors and location detection technologies, it will appeal to mechanical and aerospace engineers.




Advanced Aircraft Flight Performance


Book Description

This unique book deals with the aeroplane at several levels and aims to simulate its flight performance using computer software.




Theory of Wing Sections


Book Description

Concise compilation of subsonic aerodynamic characteristics of NACA wing sections, plus description of theory. 350 pages of tables.




Low Reynolds Number


Book Description

This book reports the latest development and trends in the low Re number aerodynamics, transition from laminar to turbulence, unsteady low Reynolds number flows, experimental studies, numerical transition modelling, control of low Re number flows, and MAV wing aerodynamics. The contributors to each chapter are fluid mechanics and aerodynamics scientists and engineers with strong expertise in their respective fields. As a whole, the studies presented here reveal important new directions toward the realization of applications of MAV and wind turbine blades.




Advanced Aircraft Flight Performance


Book Description

This book discusses aircraft flight performance, focusing on commercial aircraft but also considering examples of high-performance military aircraft. The framework is a multidisciplinary engineering analysis, fully supported by flight simulation, with software validation at several levels. The book covers topics such as geometrical configurations, configuration aerodynamics and determination of aerodynamic derivatives, weight engineering, propulsion systems (gas turbine engines and propellers), aircraft trim, flight envelopes, mission analysis, trajectory optimisation, aircraft noise, noise trajectories and analysis of environmental performance. A unique feature of this book is the discussion and analysis of the environmental performance of the aircraft, focusing on topics such as aircraft noise and carbon dioxide emissions.




Aerodynamics of Low Reynolds Number Flyers


Book Description

Low Reynolds number aerodynamics is important to a number of natural and man-made flyers. Birds, bats, and insects have been of interest to biologists for years, and active study in the aerospace engineering community, motivated by interest in micro air vehicles (MAVs), has been increasing rapidly. The primary focus of this book is the aerodynamics associated with fixed and flapping wings. The book consider both biological flyers and MAVs, including a summary of the scaling laws-which relate the aerodynamics and flight characteristics to a flyer's sizing on the basis of simple geometric and dynamics analyses, structural flexibility, laminar-turbulent transition, airfoil shapes, and unsteady flapping wing aerodynamics. The interplay between flapping kinematics and key dimensionless parameters such as the Reynolds number, Strouhal number, and reduced frequency is highlighted. The various unsteady lift enhancement mechanisms are also addressed, including leading-edge vortex, rapid pitch-up and rotational circulation, wake capture, and clap-and-fling.




Design and Predictions for a High-altitude (low-Reynolds-number) Aerodynamic Flight Experiment


Book Description

A sailplane being developed at NASA Dryden Flight Research Center will support a high-altitude flight experiment. The experiment will measure the performance parameters of an airfoil at high altitudes (70,000 to 100,000 ft), low Reynolds numbers (200,000 to 700,000), and high subsonic Mach numbers (0.5 to 0.65). The airfoil section lift and drag are determined from pitot and static pressure measurements. The locations of the separation bubble, Tollmien-Schlichting boundary layer instability frequencies, and vortex shedding are measured from a hot-film strip. The details of the planned flight experiment are presented. Several predictions of the airfoil performance are also presented. Mark Drela from the Massachusetts Institute of Technology designed the APEX-16 airfoil, using the MSES code. Two-dimensional Navier-Stokes analyses were performed by Mahidhar Tatineni and Xiaolin Zhong from the University of California, Los Angeles, and by the authors at NASA Dryden.




Design and Development of Aerospace Vehicles and Propulsion Systems


Book Description

This book presents selected papers presented in the Symposium on Applied Aerodynamics and Design of Aerospace Vehicles (SAROD 2018), which was jointly organized by Aeronautical Development Agency (the nodal agency for the design and development of combat aircraft in India), Gas-Turbine Research Establishment (responsible for design and development of gas turbine engines for military applications), and CSIR-National Aerospace Laboratories (involved in major aerospace programs in the country such as SARAS program, LCA, Space Launch Vehicles, Missiles and UAVs). It brings together experiences of aerodynamicists in India as well as abroad in Aerospace Vehicle Design, Gas Turbine Engines, Missiles and related areas. It is a useful volume for researchers, professionals and students interested in diversified areas of aerospace engineering.




Aerodynamics for Engineers


Book Description

Now reissued by Cambridge University Press, this sixth edition covers the fundamentals of aerodynamics using clear explanations and real-world examples. Aerodynamics concept boxes throughout showcase real-world applications, chapter objectives provide readers with a better understanding of the goal of each chapter and highlight the key 'take-home' concepts, and example problems aid understanding of how to apply core concepts. Coverage also includes the importance of aerodynamics to aircraft performance, applications of potential flow theory to aerodynamics, high-lift military airfoils, subsonic compressible transformations, and the distinguishing characteristics of hypersonic flow. Supported online by a solutions manual for instructors, MATLAB® files for example problems, and lecture slides for most chapters, this is an ideal textbook for undergraduates taking introductory courses in aerodynamics, and for graduates taking preparatory courses in aerodynamics before progressing to more advanced study.




Advances in Wind Power


Book Description

Today's wind energy industry is at a crossroads. Global economic instability has threatened or eliminated many financial incentives that have been important to the development of specific markets. Now more than ever, this essential element of the world energy mosaic will require innovative research and strategic collaborations to bolster the industry as it moves forward. This text details topics fundamental to the efficient operation of modern commercial farms and highlights advanced research that will enable next-generation wind energy technologies. The book is organized into three sections, Inflow and Wake Influences on Turbine Performance, Turbine Structural Response, and Power Conversion, Control and Integration. In addition to fundamental concepts, the reader will be exposed to comprehensive treatments of topics like wake dynamics, analysis of complex turbine blades, and power electronics in small-scale wind turbine systems.