Preliminary In-Flight Boundary Layer Transition Measurements on a 45 Deg Swept Wing at Mach Numbers Between 0.9 and 1.8


Book Description

A preliminary flight experiment was flown to generate a full-scale supersonic data base to aid the assessment of computational codes, to improve instrumentation for measuring boundary layer transition at supersonic speeds, and to provide preliminary information for the definition of follow-on programs. The experiment was conducted using an F-15 aircraft modified with a small cleanup test section on the right wing. Results are presented for Mach (M) numbers from 0.9 to 1.8 at altitudes from 25,000 to 55,000 ft. At M greater than or = 1.2, transition occurred near or at the leading edge for the clean configuration. The furthest aft that transition was measured was 20 percent chord at M = 0.9 and M = 0.97. No change in transition location was observed after the addition of a notch-bump on the leading edge of the inboard side of the test section which was intended to minimize attachment line transition problems. Some flow visualization was attempted during the flight experiment with both subliming chemicals and liquid crystals. However, difficulties arose from the limited time the test aircraft was able to hold test conditions and the difficulty of positioning the photo chase aircraft during supersonic test points. Therefore, no supersonic transition results were obtained. Johnson, J. Blair Armstrong Flight Research Center RTOP 533-02-21...

























A History of Suction-Type Laminar-Flow Control with Emphasis on Flight Research


Book Description

Laminar-flow control is an area of aeronautical research that has a long history at NASA's Langley Research Center, Dryden Flight Research Center, their predecessor organizations, and elsewhere. In this monograph, Albert L. Braslow, who spent much of his career at Langley working with this research, presents a history of that portion of laminar-flow technology known as active laminar-flow control, which employs suction of a small quantity of air through airplane surfaces. This important technique offers the potential for significant reduction in drag and, thereby, for large increases in range or reductions in fuel usage for aircraft. For transport aircraft, the reductions in fuel consumed as a result of laminar-flow control may equal 30 percent of present consumption. Given such potential, it is obvious that active laminar-flow control with suction is an important technology. In this study, the author covers the early history of the subject and brings the story all the way to the mid-1990s with an emphasis on flight research, much of which occurred at Dryden.