Preparation of Noble Metal Free Mixed Oxides


Book Description

In a political and legislative context promoting the use of abundant and non-toxic metals, different classes of transition metal catalysts have been developed and evaluated for two depollution reactions: (i) catalytic ozonation or activated persulfate for the elimination of pollutants containing nitrogen in the aqueous phase and (ii) the catalytic oxidation of volatile organic compounds in the gas phase. Structural spinel oxides AB2O4 and perovskites having the general formula ABO3 (where A and B are metal cations) are interesting candidates because of their safety and lower cost compared to platinum family metals. Moreover, the versatile properties of these mixed oxides, such as the numerous possible compositions and their associated surface states, have demonstrated their interest in heterogeneous catalysis. In the first reaction concerning advanced oxidation processes, spinel type mixed oxides have been studied to act as a degradation catalyst for organic pollutants (AO7 and bisphenol A). Two compositions, CuAl2O4 and CuFe2O4, have been isolated as active catalysts for the activation of ozone and peroxymonosulphate radical precursors. The combination of copper with aluminum or iron has been found to be beneficial in forming reactive radicals from ozone or peroxymonosulphate, significantly improving the degradation of targeted pollutants compared with simple oxides. In the second reaction involving the catalytic oxidation of formaldehyde in the gas phase, the perovskites and the manganese oxides were evaluated. A study dealing with the surface enrichment of the transition metal was carried out either by chemical treatment via acid washing of the perovskite precursor, or by a sub-stoechiometric approach used during the preparation. At the light of the experimental results, this enrichment improves drastically the elimination of formaldehyde towards low temperatures. These performances can be related to the cumulative effects associated with the formation of a morphology containing a multiple porosity following the acidic chemical treatment, the significant increase of the specific surface and the increase of the density of the surface redox sites highlighted by the Mn4 + / Mn3 + couple. Finally, the promotion of the catalytic support LaMnO3 by alkali and alkaline earth metals was carried out according to different conditions (La0.8A0.2MnO3 with A = K, Na, Sr, Ca). Based on the catalytic performances at a temperature giving a conversion of 50% of formaldehyde in CO2, potassium doping proved to be the most attractive doping agent (La0.8K0.2MnO3> La0.8Na0.2MnO3> La0.8Sr0.2MnO3> LaMnO3 = La0. 8Ca0.2MnO3= LMO-OH = LMO-Na). Chemical aging under wet and dry conditions has therefore been carried out on the best catalysts to evaluate their robustness. Despite a conservation of textural properties, a gradual deactivation of the doped perovskites (K, Na, Sr) was observed and related to a loss of surface active oxygen species and a reduction in the average degree of oxidation of manganese.




Nanostructures for Novel Therapy


Book Description

Nanostructures for Novel Therapy: Synthesis, Characterization and Applications focuses on the fabrication and characterization of therapeutic nanostructures, in particular, synthesis, design, and in vitro and in vivo therapeutic evaluation. The chapters provide a cogent overview of recent therapeutic applications of nanostructured materials that includes applications of nanostructured materials for wound healing in plastic surgery and stem cell therapy. The book explores the promise for more effective therapy through the use of nanostructured materials, while also assessing the challenges their use might pose from both an economic and medicinal point of view. This innovative look at how nanostructured materials are used in therapeutics will be of great benefit to researchers, providing a greater understanding of the different ways nanomaterials could improve medical treatment, along with a discussion of the obstacles that need to be overcome in order to guarantee widespread availability. Outlines how the characteristics of nanostructures made from different materials gives particular properties that can be successfully used in therapeutics Compares the properties of different nanostructures, allowing medicinal chemists and engineers to select which are most appropriate for their needs Highlights new uses of nanostructures within the therapeutic field, enabling the discovery of new, more effective drugs




Noble Metal-Metal Oxide Hybrid Nanoparticles


Book Description

Noble Metal-Metal Oxide Hybrid Nanoparticles: Fundamentals and Applications sets out concepts and emerging applications of hybrid nanoparticles in biomedicine, antibacterial, energy storage and electronics. The hybridization of noble metals (Gold, Silver, Palladium and Platinum) with metal-oxide nanoparticles exhibits superior features when compared to individual nanoparticles. In some cases, metal oxides act as semiconductors, such as nano zinc oxide or titanium oxide nanoparticles, where their hybridization with silver nanoparticles, enhanced significantly their photocatalytic efficiency. The book highlights how such nanomaterials are used for practical applications. Examines the properties of metal-metal oxide hybrid nanoparticles that make them so adaptable Explores the mechanisms by which nanoparticles interact with each other, showing how these can be exploited for practical applications Shows how metal oxide hybrid nanomaterials are used in a range of industry sectors, including energy, the environment and healthcare




Cerium Oxide (CeO2): Synthesis, Properties and Applications


Book Description

Cerium Oxide (CeO2): Synthesis, Properties and Applications provides an updated and comprehensive account of the research in the field of cerium oxide based materials. The book is divided into three main blocks that deal with its properties, synthesis and applications. Special attention is devoted to the growing number of applications of ceria based materials, including their usage in industrial and environmental catalysis and photocatalysis, energy production and storage, sensors, cosmetics, radioprotection, glass technology, pigments, stainless steel and toxicology. A brief historical introduction gives users background, and a final chapter addresses future perspectives and outlooks to stimulate future research. The book is intended for a wide audience, including students, academics and industrial researchers working in materials science, chemistry and physics. Addresses a wide range of applications of ceria-based materials, including catalysis, energy production and storage, sensors, cosmetics and toxicology Provides the fundamentals of ceria-based materials, including synthesis methods, materials properties, toxicology and surface chemistry Includes nanostructured ceria-based materials and a discussion of future prospects and outlooks




Noble-metal-free Electrocatalysts For Hydrogen Energy


Book Description

With interdisciplinary perspectives from internationally renowned experts, Noble-Metal-Free Electrocatalysts for Hydrogen Energy is one of the most authoritative references to focus solely on state-of-the-art knowledge of noble-metal-free electrocatalysts, as well as their nanostructures and unique properties. The chapters within contain cutting-edge breakthroughs, horizons, and insights into functional materials for energy applications.This book contains over 3000 references and 200 figures, and is a highly valuable resource for scientists, students, and engineers working in the fields of electrochemistry, catalysis, fuel cells, batteries, and supercapacitors.




Oxide Free Nanomaterials for Energy Storage and Conversion Applications


Book Description

Oxide Free Nanomaterials for Energy Storage and Conversion Applications covers in depth topics on non-oxide nanomaterials involving transition metal nitrides, carbides, selenides, phosphides, oxynitrides based electrodes, & other non-oxide groups. The current application of nanostructured nonoxides involves their major usage in energy storage and conversion devices variety of applications such as supercapacitor, batteries, dye-sensitized solar cells and hydrogen production applications. The current application of energy storage devices involves their usage of nanostructured non-oxide materials with improved energy and power densities. In this book readers will discover the major advancements in this field during the past decades. The various techniques used to prepare environmentally friendly nanostructured non-oxide materials, their structural and morphological characterization, their improved mechanical and material properties, and finally, current applications and future impacts of these materials are discussed. While planning and fabricating non-oxide materials, the readers must be concern over that they ought to be abundant, cost-efficient and environment-friendly for clean innovation and conceivably be of use in an expansive choice of utilization. The book gives detailed literature on the development of nanostructured non-oxides, their use as energy related devices and their present trend in the industry and market. This book also emphasis on the latest advancement about application of these noble non-oxide based materials for photocatalytic water-splitting. Recent progress on various kinds of both photocatalytic and electrocatalytic nanomaterials is reviewed, and essential aspects which govern catalytic behaviours and the corresponding stability are discussed. The book will give an updated literature on the synthesis, potential applications and future of nanostructured non-oxides in energy related applications. This book is highly useful to researchers working in the field with diversified backgrounds are expected to making the chapter truly interdisciplinary in nature. The contents in the book will emphasize the recent advances in interdisciplinary research on processing, morphology, structure and properties of nanostructured non-materials and their applications in energy applications such as supercapacitors, batteries, solar cells, electrochemical water splitting and other energy applications. Thus, nanotechnology researchers, scientists and experts need to have update of the growing trends and applications in the field of science and technology. Further, the postgraduate students, scientists, researchers and technologists are need to buy this book. Offers a comprehensive coverage of the nanostructured non-oxide materials and their potential energy applications Examines the properties of nanostructured non-oxide materials that make them so adaptable Explores the mechanisms by which nanoparticles interact with each other, showing how these can be used for industrial applications Shows the how nanostructured non-oxide materials are used in a wide range of industry sectors, containing energy production and storage







Cerium-Based Materials: Synthesis, Properties and Applications


Book Description

Cerium is the most abundant metal of rare-earth elements. It can be used to make materials such as phosphors and alloys, that have applications in various applied fields (like electronics, magnetics and heterogeneous catalysis) and devices (like catalytic converters and gas mantles). Cerium-Based Materials: Synthesis, Properties and Applications presents detailed knowledge about cerium materials. Starting with the history of cerium-based materials, it gives an introduction to the synthesis of chemicals like cerium oxides and composites. This is followed by information about characterization of cerium nanoparticles and industrial applications of cerium-based materials, with a focus on catalysis, biomedical engineering and pharmaceutical chemistry. This book is an essential reference for researchers and chemical engineers who want a summary of cerium materials and its applications.







Oxide Surfaces


Book Description

The book is a multi-author survey (in 15 chapters) of the current state of knowledge and recent developments in our understanding of oxide surfaces. The author list includes most of the acknowledged world experts in this field. The material covered includes fundamental theory and experimental studies of the geometrical, vibrational and electronic structure of such surfaces, but with a special emphasis on the chemical properties and associated reactivity. The main focus is on metal oxides but coverage extends from 'simple' rocksalt materials such as MgO through to complex transition metal oxides with different valencies.