Pressure Equipment Technology


Book Description

The safe design and operation of pressure equipment and pressure systems is key to much of the infrastructure in any present-day industrial society. This book presents an amalgam of best practice from a range of international specialists, as well as highlighting new areas that require research and development. In May 2002, pressure equipment took a major step forward with the emergence of the first edition of the new European Standard EN13445. Pressure Equipment Technology; Theory and Practice not only describes and analyses the status of the new Standard (providing underpinning data) but primarily it seeks to provide new light and present new information on many of the areas where there is insufficient coverage in EN13445 or other Standards. The information is presented in a variety of ways in order to make it useful not only for the specialist but for the general reader as well. The researcher in pressure vessel technology will find here a comprehensive and up-to date picture on many important and vital topics that need to be considered. The non-expert will also find a variety of different analysis approaches that will give interest in a whole spectrum of pressure equipment and storage vessels. The papers and information included in this volume give expert guidance on a variety of important topics that must be understood if appropriate design of pressure equipment is going to be undertaken. These include, Piping and Finite Element Analysis Saddles - Plastic Collapse Loads Vessel Ends and Eccentric Loads Containment Vessels Explosive Loading Welding and Fatigue




Pressure Vessel Design Manual


Book Description

Pressure vessels are closed containers designed to hold gases or liquids at a pressure substantially different from the ambient pressure. They have a variety of applications in industry, including in oil refineries, nuclear reactors, vehicle airbrake reservoirs, and more. The pressure differential with such vessels is dangerous, and due to the risk of accident and fatality around their use, the design, manufacture, operation and inspection of pressure vessels is regulated by engineering authorities and guided by legal codes and standards. Pressure Vessel Design Manual is a solutions-focused guide to the many problems and technical challenges involved in the design of pressure vessels to match stringent standards and codes. It brings together otherwise scattered information and explanations into one easy-to-use resource to minimize research and take readers from problem to solution in the most direct manner possible. - Covers almost all problems that a working pressure vessel designer can expect to face, with 50+ step-by-step design procedures including a wealth of equations, explanations and data - Internationally recognized, widely referenced and trusted, with 20+ years of use in over 30 countries making it an accepted industry standard guide - Now revised with up-to-date ASME, ASCE and API regulatory code information, and dual unit coverage for increased ease of international use




Pressure Vessels Field Manual


Book Description

The majority of the cost-savings for any oil production facility is the prevention of failure in one of the production equipment such as pressure vessels. This book provides engineers with the advanced tools to alter, repair and re-rate pressure vessels using ASME, NBIC and API 510 codes and standards.




Circular Cylinders and Pressure Vessels


Book Description

This book provides comprehensive coverage of stress and strain analysis of circular cylinders and pressure vessels, one of the classic topics of machine design theory and methodology. Whereas other books offer only a partial treatment of the subject and frequently consider stress analysis solely in the elastic field, Circular Cylinders and Pressure Vessels broadens the design horizons, analyzing theoretically what happens at pressures that stress the material beyond its yield point and at thermal loads that give rise to creep. The consideration of both traditional and advanced topics ensures that the book will be of value for a broad spectrum of readers, including students in postgraduate, and doctoral programs and established researchers and design engineers. The relations provided will serve as a sound basis for the design of products that are safe, technologically sophisticated, and compliant with standards and codes and for the development of innovative applications.




Pressure Vessels


Book Description

With very few books adequately addressing ASME Boiler & Pressure Vessel Code, and other international code issues, Pressure Vessels: Design and Practice provides a comprehensive, in-depth guide on everything engineers need to know. With emphasis on the requirements of the ASME this consummate work examines the design of pressure vessel com




Federal Register


Book Description




Handbook of Valves and Actuators


Book Description

Industries that use pumps, seals and pipes will also use valves and actuators in their systems. This key reference provides anyone who designs, uses, specifies or maintains valves and valve systems with all of the critical design, specification, performance and operational information they need for the job in hand. Brian Nesbitt is a well-known consultant with a considerable publishing record. A lifetime of experience backs up the huge amount of practical detail in this volume.* Valves and actuators are widely used across industry and this dedicated reference provides all the information plant designers, specifiers or those involved with maintenance require* Practical approach backed up with technical detail and engineering know-how makes this the ideal single volume reference* Compares and contracts valve and actuator types to ensure the right equipment is chosen for the right application and properly maintained




Pressure Vessel Design Manual


Book Description

A pressure vessel is a container that holds a liquid, vapor, or gas at a different pressure other than atmospheric pressure at the same elevation. More specifically in this instance, a pressure vessel is used to 'distill'/'crack' crude material taken from the ground (petroleum, etc.) and output a finer quality product that will eventually become gas, plastics, etc. This book is an accumulation of design procedures, methods, techniques, formulations, and data for use in the design of pressure vessels, their respective parts and equipment. The book has broad applications to chemical, civil and petroleum engineers, who construct, install or operate process facilities, and would also be an invaluable tool for those who inspect the manufacturing of pressure vessels or review designs. - ASME standards and guidelines (such as the method for determining the Minimum Design Metal Temperature)are impenetrable and expensive: avoid both problems with this expert guide - Visual aids walk the designer through the multifaceted stages of analysis and design - Includes the latest procedures to use as tools in solving design issues




Fabrication of Metallic Pressure Vessels


Book Description

Fabrication of Metallic Pressure Vessels A comprehensive guide to processes and topics in pressure vessel fabrication Fabrication of Metallic Pressure Vessels delivers comprehensive coverage of the various processes used in the fabrication of process equipment. The authors, both accomplished engineers, offer readers a broad understanding of the steps and processes required to fabricate pressure vessels, including cutting, forming, welding, machining, and testing, as well as suggestions on controlling costs. Each chapter provides a complete description of a specific fabrication process and details its characteristics and requirements. Alongside the accessible and practical text, you’ll find equations, charts, copious illustrations, and other study aids designed to assist the reader in the real-world implementation of the concepts discussed within the book. You’ll find numerous appendices that include weld symbols, volume and area equations, pipe and tube dimensions, weld deposition rates, lifting shackle data, and more. In addition to detailed discussions of cutting, machining, welding, and post-weld heat treatments, readers will also benefit from the inclusion of: A thorough introduction to construction materials, including both ferrous and nonferrous alloys An exploration of layout, including projection and triangulation, material thickness and bending allowance, angles and channels, and marking conventions A treatment of material forming, including bending versus three-dimensional forming, plastic theory, forming limits, brake forming, roll forming, and tolerances Practical discussions of fabrication, including weld preparation, forming, vessel fit up and assembly, correction of distortion, and transportation of vessels Perfect for new and established engineers, designers, and procurement personnel working with process equipment or in the fabrication field, Fabrication of Metallic Pressure Vessels will also earn a place in the libraries of students in engineering programs seeking a one-stop resource for the fabrication of pressure vessels.