Market-Consistent Prices


Book Description

Arbitrage Theory provides the foundation for the pricing of financial derivatives and has become indispensable in both financial theory and financial practice. This textbook offers a rigorous and comprehensive introduction to the mathematics of arbitrage pricing in a discrete-time, finite-state economy in which a finite number of securities are traded. In a first step, various versions of the Fundamental Theorem of Asset Pricing, i.e., characterizations of when a market does not admit arbitrage opportunities, are proved. The book then focuses on incomplete markets where the main concern is to obtain a precise description of the set of “market-consistent” prices for nontraded financial contracts, i.e. the set of prices at which such contracts could be transacted between rational agents. Both European-type and American-type contracts are considered. A distinguishing feature of this book is its emphasis on market-consistent prices and a systematic description of pricing rules, also at intermediate dates. The benefits of this approach are most evident in the treatment of American options, which is novel in terms of both the presentation and the scope, while also presenting new results. The focus on discrete-time, finite-state models makes it possible to cover all relevant topics while requiring only a moderate mathematical background on the part of the reader. The book will appeal to mathematical finance and financial economics students seeking an elementary but rigorous introduction to the subject; mathematics and physics students looking for an opportunity to get acquainted with a modern applied topic; and mathematicians, physicists and quantitatively inclined economists working or planning to work in the financial industry.




Option Pricing in Incomplete Markets


Book Description

This volume offers the reader practical methods to compute the option prices in the incomplete asset markets. The [GLP & MEMM] pricing models are clearly introduced, and the properties of these models are discussed in great detail. It is shown that the geometric L(r)vy process (GLP) is a typical example of the incomplete market, and that the MEMM (minimal entropy martingale measure) is an extremely powerful pricing measure. This volume also presents the calibration procedure of the [GLP \& MEMM] model that has been widely used in the application of practical problem




Theory of Incomplete Markets


Book Description

Theory of incompl. markets/M. Magill, M. Quinzii. - V.1.




Mathematical Finance - Bachelier Congress 2000


Book Description

The Bachelier Society for Mathematical Finance held its first World Congress in Paris last year, and coincided with the centenary of Louis Bacheliers thesis defence. In his thesis Bachelier introduces Brownian motion as a tool for the analysis of financial markets as well as the exact definition of options. The thesis is viewed by many the key event that marked the emergence of mathematical finance as a scientific discipline. The prestigious list of plenary speakers in Paris included two Nobel laureates, Paul Samuelson and Robert Merton, and the mathematicians Henry McKean and S.R.S. Varadhan. Over 130 further selected talks were given in three parallel sessions. .




Arbitrage Theory in Continuous Time


Book Description

The third edition of this popular introduction to the classical underpinnings of the mathematics behind finance continues to combine sound mathematical principles with economic applications. Concentrating on the probabilistic theory of continuous arbitrage pricing of financial derivatives, including stochastic optimal control theory and Merton's fund separation theory, the book is designed for graduate students and combines necessary mathematical background with a solid economic focus. It includes a solved example for every new technique presented, contains numerous exercises, and suggests further reading in each chapter. In this substantially extended new edition Bjork has added separate and complete chapters on the martingale approach to optimal investment problems, optimal stopping theory with applications to American options, and positive interest models and their connection to potential theory and stochastic discount factors. More advanced areas of study are clearly marked to help students and teachers use the book as it suits their needs.




The Paradox of Asset Pricing


Book Description

Asset pricing theory abounds with elegant mathematical models. The logic is so compelling that the models are widely used in policy, from banking, investments, and corporate finance to government. To what extent, however, can these models predict what actually happens in financial markets? In The Paradox of Asset Pricing, a leading financial researcher argues forcefully that the empirical record is weak at best. Peter Bossaerts undertakes the most thorough, technically sound investigation in many years into the scientific character of the pricing of financial assets. He probes this conundrum by modeling a decidedly volatile phenomenon that, he says, the world of finance has forgotten in its enthusiasm for the efficient markets hypothesis--speculation. Bossaerts writes that the existing empirical evidence may be tainted by the assumptions needed to make sense of historical field data or by reanalysis of the same data. To address the first problem, he demonstrates that one central assumption--that markets are efficient processors of information, that risk is a knowable quantity, and so on--can be relaxed substantially while retaining core elements of the existing methodology. The new approach brings novel insights to old data. As for the second problem, he proposes that asset pricing theory be studied through experiments in which subjects trade purposely designed assets for real money. This book will be welcomed by finance scholars and all those math--and statistics-minded readers interested in knowing whether there is science beyond the mathematics of finance. This book provided the foundation for subsequent journal articles that won two prestigious awards: the 2003 Journal of Financial Markets Best Paper Award and the 2004 Goldman Sachs Asset Management Best Research Paper for the Review of Finance.




Continuous-Time Asset Pricing Theory


Book Description

Asset pricing theory yields deep insights into crucial market phenomena such as stock market bubbles. Now in a newly revised and updated edition, this textbook guides the reader through this theory and its applications to markets. The new edition features ​new results on state dependent preferences, a characterization of market efficiency and a more general presentation of multiple-factor models using only the assumptions of no arbitrage and no dominance. Taking an innovative approach based on martingales, the book presents advanced techniques of mathematical finance in a business and economics context, covering a range of relevant topics such as derivatives pricing and hedging, systematic risk, portfolio optimization, market efficiency, and equilibrium pricing models. For applications to high dimensional statistics and machine learning, new multi-factor models are given. This new edition integrates suicide trading strategies into the understanding of asset price bubbles, greatly enriching the overall presentation and further strengthening the book’s underlying theme of economic bubbles. Written by a leading expert in risk management, Continuous-Time Asset Pricing Theory is the first textbook on asset pricing theory with a martingale approach. Based on the author’s extensive teaching and research experience on the topic, it is particularly well suited for graduate students in business and economics with a strong mathematical background.




Indifference Pricing


Book Description

This is the first book about the emerging field of utility indifference pricing for valuing derivatives in incomplete markets. René Carmona brings together a who's who of leading experts in the field to provide the definitive introduction for students, scholars, and researchers. Until recently, financial mathematicians and engineers developed pricing and hedging procedures that assumed complete markets. But markets are generally incomplete, and it may be impossible to hedge against all sources of randomness. Indifference Pricing offers cutting-edge procedures developed under more realistic market assumptions. The book begins by introducing the concept of indifference pricing in the simplest possible models of discrete time and finite state spaces where duality theory can be exploited readily. It moves into a more technical discussion of utility indifference pricing for diffusion models, and then addresses problems of optimal design of derivatives by extending the indifference pricing paradigm beyond the realm of utility functions into the realm of dynamic risk measures. Focus then turns to the applications, including portfolio optimization, the pricing of defaultable securities, and weather and commodity derivatives. The book features original mathematical results and an extensive bibliography and indexes. In addition to the editor, the contributors are Pauline Barrieu, Tomasz R. Bielecki, Nicole El Karoui, Robert J. Elliott, Said Hamadène, Vicky Henderson, David Hobson, Aytac Ilhan, Monique Jeanblanc, Mattias Jonsson, Anis Matoussi, Marek Musiela, Ronnie Sircar, John van der Hoek, and Thaleia Zariphopoulou. The first book on utility indifference pricing Explains the fundamentals of indifference pricing, from simple models to the most technical ones Goes beyond utility functions to analyze optimal risk transfer and the theory of dynamic risk measures Covers non-Markovian and partially observed models and applications to portfolio optimization, defaultable securities, static and quadratic hedging, weather derivatives, and commodities Includes extensive bibliography and indexes Provides essential reading for PhD students, researchers, and professionals




Advances in Mathematical Finance


Book Description

This self-contained volume brings together a collection of chapters by some of the most distinguished researchers and practitioners in the field of mathematical finance and financial engineering. Presenting state-of-the-art developments in theory and practice, the book has real-world applications to fixed income models, credit risk models, CDO pricing, tax rebates, tax arbitrage, and tax equilibrium. It is a valuable resource for graduate students, researchers, and practitioners in mathematical finance and financial engineering.




Pricing Derivative Securities


Book Description

This book presents techniques for valuing derivative securities at a level suitable for practitioners, students in doctoral programs in economics and finance, and those in masters-level programs in financial mathematics and computational finance. It provides the necessary mathematical tools from analysis, probability theory, the theory of stochastic processes, and stochastic calculus, making extensive use of examples. It also covers pricing theory, with emphasis on martingale methods. The chapters are organized around the assumptions made about the dynamics of underlying price processes. Readers begin with simple, discrete-time models that require little mathematical sophistication, proceed to the basic Black-Scholes theory, and then advance to continuous-time models with multiple risk sources. The second edition takes account of the major developments in the field since 2000. New topics include the use of simulation to price American-style derivatives, a new one-step approach to pricing options by inverting characteristic functions, and models that allow jumps in volatility and Markov-driven changes in regime. The new chapter on interest-rate derivatives includes extensive coverage of the LIBOR market model and an introduction to the modeling of credit risk. As a supplement to the text, the book contains an accompanying CD-ROM with user-friendly FORTRAN, C++, and VBA program components.