Asset Pricing in Discrete Time


Book Description

Relying on the existence, in a complete market, of a pricing kernel, this book covers the pricing of assets, derivatives, and bonds in a discrete time, complete markets framework. It is primarily aimed at advanced Masters and PhD students in finance.-- Covers asset pricing in a single period model, deriving a simple complete market pricing model and using Stein's lemma to derive a version of the Capital Asset Pricing Model.-- Looks more deeply into some of the utility determinants of the pricing kernel, investigating in particular the effect of non-marketable background risks on the shape of the pricing kernel.-- Derives the prices of European-style contingent claims, in particular call options, in a one-period model; derives the Black-Scholes model assuming a lognormal distribution for the asset and a pricing kernel with constant elasticity, and emphasizes the idea of a risk-neutral valuation relationship between the price of a contingent claim on an asset and the underlying asset price.-- Extends the analysis to contingent claims on assets with non-lognormal distributions and considers the pricing of claims when risk-neutral valuation relationships do not exist.-- Expands the treatment of asset pricing to a multi-period economy, deriving prices in a rational expectations equilibrium.-- Uses the rational expectations framework to analyse the pricing of forward and futures contracts on assets and derivatives.-- Analyses the pricing of bonds given stochastic interest rates, and then uses this methodology to model the drift of forward rates, and as a special case the drift of the forward London Interbank Offer Rate in the LIBOR Market Model.




Principles of Financial Economics


Book Description

This second edition provides a rigorous yet accessible graduate-level introduction to financial economics. Since students often find the link between financial economics and equilibrium theory hard to grasp, less attention is given to purely financial topics, such as valuation of derivatives, and more emphasis is placed on making the connection with equilibrium theory explicit and clear. This book also provides a detailed study of two-date models because almost all of the key ideas in financial economics can be developed in the two-date setting. Substantial discussions and examples are included to make the ideas readily understandable. Several chapters in this new edition have been reordered and revised to deal with portfolio restrictions sequentially and more clearly, and an extended discussion on portfolio choice and optimal allocation of risk is available. The most important additions are new chapters on infinite-time security markets, exploring, among other topics, the possibility of price bubbles.




Introduction to Option Pricing Theory


Book Description

Since the appearance of seminal works by R. Merton, and F. Black and M. Scholes, stochastic processes have assumed an increasingly important role in the development of the mathematical theory of finance. This work examines, in some detail, that part of stochastic finance pertaining to option pricing theory. Thus the exposition is confined to areas of stochastic finance that are relevant to the theory, omitting such topics as futures and term-structure. This self-contained work begins with five introductory chapters on stochastic analysis, making it accessible to readers with little or no prior knowledge of stochastic processes or stochastic analysis. These chapters cover the essentials of Ito's theory of stochastic integration, integration with respect to semimartingales, Girsanov's Theorem, and a brief introduction to stochastic differential equations. Subsequent chapters treat more specialized topics, including option pricing in discrete time, continuous time trading, arbitrage, complete markets, European options (Black and Scholes Theory), American options, Russian options, discrete approximations, and asset pricing with stochastic volatility. In several chapters, new results are presented. A unique feature of the book is its emphasis on arbitrage, in particular, the relationship between arbitrage and equivalent martingale measures (EMM), and the derivation of necessary and sufficient conditions for no arbitrage (NA). {\it Introduction to Option Pricing Theory} is intended for students and researchers in statistics, applied mathematics, business, or economics, who have a background in measure theory and have completed probability theory at the intermediate level. The work lends itself to self-study, as well as to a one-semester course at the graduate level.




Indifference Pricing


Book Description

This is the first book about the emerging field of utility indifference pricing for valuing derivatives in incomplete markets. René Carmona brings together a who's who of leading experts in the field to provide the definitive introduction for students, scholars, and researchers. Until recently, financial mathematicians and engineers developed pricing and hedging procedures that assumed complete markets. But markets are generally incomplete, and it may be impossible to hedge against all sources of randomness. Indifference Pricing offers cutting-edge procedures developed under more realistic market assumptions. The book begins by introducing the concept of indifference pricing in the simplest possible models of discrete time and finite state spaces where duality theory can be exploited readily. It moves into a more technical discussion of utility indifference pricing for diffusion models, and then addresses problems of optimal design of derivatives by extending the indifference pricing paradigm beyond the realm of utility functions into the realm of dynamic risk measures. Focus then turns to the applications, including portfolio optimization, the pricing of defaultable securities, and weather and commodity derivatives. The book features original mathematical results and an extensive bibliography and indexes. In addition to the editor, the contributors are Pauline Barrieu, Tomasz R. Bielecki, Nicole El Karoui, Robert J. Elliott, Said Hamadène, Vicky Henderson, David Hobson, Aytac Ilhan, Monique Jeanblanc, Mattias Jonsson, Anis Matoussi, Marek Musiela, Ronnie Sircar, John van der Hoek, and Thaleia Zariphopoulou. The first book on utility indifference pricing Explains the fundamentals of indifference pricing, from simple models to the most technical ones Goes beyond utility functions to analyze optimal risk transfer and the theory of dynamic risk measures Covers non-Markovian and partially observed models and applications to portfolio optimization, defaultable securities, static and quadratic hedging, weather derivatives, and commodities Includes extensive bibliography and indexes Provides essential reading for PhD students, researchers, and professionals




Advances in Mathematical Finance


Book Description

This self-contained volume brings together a collection of chapters by some of the most distinguished researchers and practitioners in the field of mathematical finance and financial engineering. Presenting state-of-the-art developments in theory and practice, the book has real-world applications to fixed income models, credit risk models, CDO pricing, tax rebates, tax arbitrage, and tax equilibrium. It is a valuable resource for graduate students, researchers, and practitioners in mathematical finance and financial engineering.




Pricing in (In)Complete Markets


Book Description

In this book, the authors investigate structural aspects of no arbitrage pricing of contingent claims and applications of the general pricing theory in the context of incomplete markets. A quasi-closed form pricing equation in terms of artificial probabilities is derived for arbitrary payoff structures. Moreover, a comparison between continuous and discrete models is presented, highlighting the major similarities and key differences. As applications, two sources of market incompleteness are considered, namely stochastic volatility and stochastic liquidity. Firstly, the general theory discussed before is applied to the pricing of power options in a stochastic volatility model. Secondly, the issue of liquidity risk is considered by focusing on the aspect of how asset price dynamics are affected by the trading strategy of a large investor.




Market-Consistent Prices


Book Description

Arbitrage Theory provides the foundation for the pricing of financial derivatives and has become indispensable in both financial theory and financial practice. This textbook offers a rigorous and comprehensive introduction to the mathematics of arbitrage pricing in a discrete-time, finite-state economy in which a finite number of securities are traded. In a first step, various versions of the Fundamental Theorem of Asset Pricing, i.e., characterizations of when a market does not admit arbitrage opportunities, are proved. The book then focuses on incomplete markets where the main concern is to obtain a precise description of the set of “market-consistent” prices for nontraded financial contracts, i.e. the set of prices at which such contracts could be transacted between rational agents. Both European-type and American-type contracts are considered. A distinguishing feature of this book is its emphasis on market-consistent prices and a systematic description of pricing rules, also at intermediate dates. The benefits of this approach are most evident in the treatment of American options, which is novel in terms of both the presentation and the scope, while also presenting new results. The focus on discrete-time, finite-state models makes it possible to cover all relevant topics while requiring only a moderate mathematical background on the part of the reader. The book will appeal to mathematical finance and financial economics students seeking an elementary but rigorous introduction to the subject; mathematics and physics students looking for an opportunity to get acquainted with a modern applied topic; and mathematicians, physicists and quantitatively inclined economists working or planning to work in the financial industry.




Foundations Of Finan


Book Description




Financial Asset Pricing Theory


Book Description

The book presents models for the pricing of financial assets such as stocks, bonds, and options. The models are formulated and analyzed using concepts and techniques from mathematics and probability theory. It presents important classic models and some recent 'state-of-the-art' models that outperform the classics.




Investors and Markets


Book Description

"Nobel Prize-winning financial economist William Sharpe shows that investment professionals cannot make good portfolio choices unless they understand the determinants of asset prices." -- Provided by publisher.