Primarily Math


Book Description

It is important that schools emphasize a problem-solving approach to mathematics beginning in the early years and continuing through high school. Students should learn to value the process of solving problems, as well as getting the correct solutions. The strategies in this book will help students reason, develop their problem-solving strategies, grow in their ability to communicate mathematically, and develop confidence in their mathematical abilities. Five different problem-solving strategies are carefully taught using teacher-directed interactive introductory lessons. A series of practice problems follow the introductory lessons for each strategy. The strategies include: using a manipulative or acting out a problem, drawing a picture or diagram, extending a repeating pattern, making a table or list, and choosing relevant information. Each strategy is first introduced through several carefully presented problems that include introductory group lessons and instructional notes for the teachers. Additionally, the last section of the book presents a variety of problems that give students the opportunity to apply the problem-solving strategies they have learned. This is the perfect supplement to any primary math program, as well as an excellent resource for a math center. All problems are delightfully illustrated and reproducible. Grades 2-4




Primarily Math


Book Description

Sample problems for students studying math in grades 2-4.




Primary Grade Challenge Math


Book Description

Offers a higher level of material that goes beyond calculation skills for children in the primary grades.




Primarily Bears


Book Description

Highly motivating treatment of topics such as logic, permutations and arrangements.







Game Theory


Book Description

A fundamental introduction to modern game theory from a mathematical viewpoint Game theory arises in almost every fact of human and inhuman interaction since oftentimes during these communications objectives are opposed or cooperation is viewed as an option. From economics and finance to biology and computer science, researchers and practitioners are often put in complex decision-making scenarios, whether they are interacting with each other or working with evolving technology and artificial intelligence. Acknowledging the role of mathematics in making logical and advantageous decisions, Game Theory: An Introduction uses modern software applications to create, analyze, and implement effective decision-making models. While most books on modern game theory are either too abstract or too applied, this book provides a balanced treatment of the subject that is both conceptual and hands-on. Game Theory introduces readers to the basic theories behind games and presents real-world examples from various fields of study such as economics, political science, military science, finance, biological science as well as general game playing. A unique feature of this book is the use of Maple to find the values and strategies of games, and in addition, it aids in the implementation of algorithms for the solution or visualization of game concepts. Maple is also utilized to facilitate a visual learning environment of game theory and acts as the primary tool for the calculation of complex non-cooperative and cooperative games. Important game theory topics are presented within the following five main areas of coverage: Two-person zero sum matrix games Nonzero sum games and the reduction to nonlinear programming Cooperative games, including discussion of both the Nucleolus concept and the Shapley value Bargaining, including threat strategies Evolutionary stable strategies and population games Although some mathematical competence is assumed, appendices are provided to act as a refresher of the basic concepts of linear algebra, probability, and statistics. Exercises are included at the end of each section along with algorithms for the solution of the games to help readers master the presented information. Also, explicit Maple and Mathematica® commands are included in the book and are available as worksheets via the book's related Web site. The use of this software allows readers to solve many more advanced and interesting games without spending time on the theory of linear and nonlinear programming or performing other complex calculations. With extensive examples illustrating game theory's wide range of relevance, this classroom-tested book is ideal for game theory courses in mathematics, engineering, operations research, computer science, and economics at the upper-undergraduate level. It is also an ideal companion for anyone who is interested in the applications of game theory.







3D Math Primer for Graphics and Game Development, 2nd Edition


Book Description

This engaging book presents the essential mathematics needed to describe, simulate, and render a 3D world. Reflecting both academic and in-the-trenches practical experience, the authors teach you how to describe objects and their positions, orientations, and trajectories in 3D using mathematics. The text provides an introduction to mathematics for game designers, including the fundamentals of coordinate spaces, vectors, and matrices. It also covers orientation in three dimensions, calculus and dynamics, graphics, and parametric curves.




Uncovering Student Thinking About Mathematics in the Common Core, Grades K–2


Book Description

Get to the core of your students’ understanding of math! Quickly and reliably identify your primary students’ math knowledge with these convenient and easy-to-implement diagnostic tools! Tobey and Fagan provide 25 new assessments specifically for Grades K–2 and directly aligned with the Common Core. Organized by strand, the probes will enable you to: Quickly and objectively evaluate each child’s prior knowledge of basic math and numeracy Systematically address common mistakes and obstacles before they become long-term problems Make sound instructional choices to improve all students’ math skills




Uses of Technology in Primary and Secondary Mathematics Education


Book Description

This book provides international perspectives on the use of digital technologies in primary, lower secondary and upper secondary school mathematics. It gathers contributions by the members of three topic study groups from the 13th International Congress on Mathematical Education and covers a range of themes that will appeal to researchers and practitioners alike. The chapters include studies on technologies such as virtual manipulatives, apps, custom-built assessment tools, dynamic geometry, computer algebra systems and communication tools. Chiefly focusing on teaching and learning mathematics, the book also includes two chapters that address the evidence for technologies’ effects on school mathematics. The diverse technologies considered provide a broad overview of the potential that digital solutions hold in connection with teaching and learning. The chapters provide both a snapshot of the status quo of technologies in school mathematics, and outline how they might impact school mathematics ten to twenty years from now.