Variational Principles in Dynamics and Quantum Theory


Book Description

DIVHistorical, theoretical survey with many insights, much hard-to-find material. Hamilton’s principle, Hamilton-Jacobi equation, etc. /div




Principles of Dynamics


Book Description




Principles of Brain Dynamics


Book Description

Experimental and theoretical approaches to global brain dynamics that draw on the latest research in the field. The consideration of time or dynamics is fundamental for all aspects of mental activity—perception, cognition, and emotion—because the main feature of brain activity is the continuous change of the underlying brain states even in a constant environment. The application of nonlinear dynamics to the study of brain activity began to flourish in the 1990s when combined with empirical observations from modern morphological and physiological observations. This book offers perspectives on brain dynamics that draw on the latest advances in research in the field. It includes contributions from both theoreticians and experimentalists, offering an eclectic treatment of fundamental issues. Topics addressed range from experimental and computational approaches to transient brain dynamics to the free-energy principle as a global brain theory. The book concludes with a short but rigorous guide to modern nonlinear dynamics and their application to neural dynamics.




Advanced Dynamics


Book Description

A broad and detailed description of dynamics for mechanical and aerospace engineering applications.




Principles of Dynamics ...


Book Description







The Principle of Least Action in Geometry and Dynamics


Book Description

New variational methods by Aubry, Mather, and Mane, discovered in the last twenty years, gave deep insight into the dynamics of convex Lagrangian systems. This book shows how this Principle of Least Action appears in a variety of settings (billiards, length spectrum, Hofer geometry, modern symplectic geometry). Thus, topics from modern dynamical systems and modern symplectic geometry are linked in a new and sometimes surprising way. The central object is Mather’s minimal action functional. The level is for graduate students onwards, but also for researchers in any of the subjects touched in the book.




Principles of Analytical System Dynamics


Book Description

A novel approach to analytical mechanics, using differential-algebraic equations, which, unlike the usual approach via ordinary differential equations, provides a direct connection to numerical methods and avoids the cumbersome graphical methods that are often needed in analysing systems. Using energy as a unifying concept and systems theory as a unifying theme, the book addresses the foundations of such disciplines as mechatronics, concurrent engineering, and systems integration, considering only discrete systems. Readers are expected to be familiar with the fundamentals of engineering mechanics, but no detailed knowledge of analytical mechanics, system dynamics, or variational calculus is required. The treatment is thus accessible to advanced undergraduates, and the interdisciplinary approach should be of interest not only to academic engineers and physicists, but also to practising engineers and applied mathematicians.




Computational Fluid Dynamics


Book Description

Computational Fluid Dynamics (CFD) is an important design tool in engineering and also a substantial research tool in various physical sciences as well as in biology. The objective of this book is to provide university students with a solid foundation for understanding the numerical methods employed in today's CFD and to familiarise them with modern CFD codes by hands-on experience. It is also intended for engineers and scientists starting to work in the field of CFD or for those who apply CFD codes. Due to the detailed index, the text can serve as a reference handbook too. Each chapter includes an extensive bibliography, which provides an excellent basis for further studies.




Principles of Computational Fluid Dynamics


Book Description

This up-to-date book gives an account of the present state of the art of numerical methods employed in computational fluid dynamics. The underlying numerical principles are treated in some detail, using elementary methods. The author gives many pointers to the current literature, facilitating further study. This book will become the standard reference for CFD for the next 20 years.