Probability, Dynamics and Causality


Book Description

The book is a collection of essays on various issues in philosophy of science, with special emphasis on the foundations of probability and statistics, and quantum mechanics. The main topics, addressed by some of the most outstanding researchers in the field, are subjective probability, Bayesian statistics, probability kinematics, causal decision making, probability and realism in quantum mechanics.




Time and Causality Across the Sciences


Book Description

Explores the critical role time plays in our understanding of causality, across psychology, biology, physics and the social sciences.




Causality


Book Description

A state of the art volume on statistical causality Causality: Statistical Perspectives and Applications presents a wide-ranging collection of seminal contributions by renowned experts in the field, providing a thorough treatment of all aspects of statistical causality. It covers the various formalisms in current use, methods for applying them to specific problems, and the special requirements of a range of examples from medicine, biology and economics to political science. This book: Provides a clear account and comparison of formal languages, concepts and models for statistical causality. Addresses examples from medicine, biology, economics and political science to aid the reader's understanding. Is authored by leading experts in their field. Is written in an accessible style. Postgraduates, professional statisticians and researchers in academia and industry will benefit from this book.




Actual Causality


Book Description

Explores actual causality, and such related notions as degree of responsibility, degree of blame, and causal explanation. The goal is to arrive at a definition of causality that matches our natural language usage and is helpful, for example, to a jury deciding a legal case, a programmer looking for the line of code that cause some software to fail, or an economist trying to determine whether austerity caused a subsequent depression.




Causality, Probability, and Time


Book Description

Presents a new approach to causal inference and explanation, addressing both the timing and complexity of relationships.







Causal Inference in Statistics


Book Description

CAUSAL INFERENCE IN STATISTICS A Primer Causality is central to the understanding and use of data. Without an understanding of cause–effect relationships, we cannot use data to answer questions as basic as "Does this treatment harm or help patients?" But though hundreds of introductory texts are available on statistical methods of data analysis, until now, no beginner-level book has been written about the exploding arsenal of methods that can tease causal information from data. Causal Inference in Statistics fills that gap. Using simple examples and plain language, the book lays out how to define causal parameters; the assumptions necessary to estimate causal parameters in a variety of situations; how to express those assumptions mathematically; whether those assumptions have testable implications; how to predict the effects of interventions; and how to reason counterfactually. These are the foundational tools that any student of statistics needs to acquire in order to use statistical methods to answer causal questions of interest. This book is accessible to anyone with an interest in interpreting data, from undergraduates, professors, researchers, or to the interested layperson. Examples are drawn from a wide variety of fields, including medicine, public policy, and law; a brief introduction to probability and statistics is provided for the uninitiated; and each chapter comes with study questions to reinforce the readers understanding.




Causality


Book Description

Causality offers the first comprehensive coverage of causal analysis in many sciences, including recent advances using graphical methods. Pearl presents a unified account of the probabilistic, manipulative, counterfactual and structural approaches to causation, and devises simple mathematical tools for analyzing the relationships between causal connections, statistical associations, actions and observations. The book will open the way for including causal analysis in the standard curriculum of statistics, artificial intelligence ...




Probability and Causality


Book Description

The contributions to this special collection concern issues and problems discussed in or related to the work of Wesley C. Salmon. Salmon has long been noted for his important work in the philosophy of science, which has included research on the interpretation of probability, the nature of explanation, the character of reasoning, the justification of induction, the structure of space/time and the paradoxes of Zeno, to mention only some of the most prominent. During a time of increasing preoccupation with historical and sociological approaches to under standing science (which characterize scientific developments as though they could be adequately analysed from the perspective of political movements, even mistaking the phenomena of conversion for the rational appraisal of scientific theories), Salmon has remained stead fastly devoted to isolating and justifying those normative standards distinguishing science from non-science - especially through the vindi cation of general principles of scientific procedure and the validation of specific examples of scientific theories - without which science itself cannot be (even remotely) adequately understood. In this respect, Salmon exemplifies and strengthens a splendid tradi tion whose most remarkable representatives include Hans Reichenbach, Rudolf Carnap and Carl G. Hempel, all of whom exerted a profound influence upon his own development.




The Book of Why


Book Description

A Turing Award-winning computer scientist and statistician shows how understanding causality has revolutionized science and will revolutionize artificial intelligence "Correlation is not causation." This mantra, chanted by scientists for more than a century, has led to a virtual prohibition on causal talk. Today, that taboo is dead. The causal revolution, instigated by Judea Pearl and his colleagues, has cut through a century of confusion and established causality -- the study of cause and effect -- on a firm scientific basis. His work explains how we can know easy things, like whether it was rain or a sprinkler that made a sidewalk wet; and how to answer hard questions, like whether a drug cured an illness. Pearl's work enables us to know not just whether one thing causes another: it lets us explore the world that is and the worlds that could have been. It shows us the essence of human thought and key to artificial intelligence. Anyone who wants to understand either needs The Book of Why.