Probability, Statistics and Econometrics


Book Description

Probability, Statistics and Econometrics provides a concise, yet rigorous, treatment of the field that is suitable for graduate students studying econometrics, very advanced undergraduate students, and researchers seeking to extend their knowledge of the trinity of fields that use quantitative data in economic decision-making. The book covers much of the groundwork for probability and inference before proceeding to core topics in econometrics. Authored by one of the leading econometricians in the field, it is a unique and valuable addition to the current repertoire of econometrics textbooks and reference books. - Synthesizes three substantial areas of research, ensuring success in a subject matter than can be challenging to newcomers - Focused and modern coverage that provides relevant examples from economics and finance - Contains some modern frontier material, including bootstrap and lasso methods not treated in similar-level books - Collects the necessary material for first semester Economics PhD students into a single text




Probability and Statistics for Economists


Book Description

A comprehensive and up-to-date introduction to the mathematics that all economics students need to know Probability theory is the quantitative language used to handle uncertainty and is the foundation of modern statistics. Probability and Statistics for Economists provides graduate and PhD students with an essential introduction to mathematical probability and statistical theory, which are the basis of the methods used in econometrics. This incisive textbook teaches fundamental concepts, emphasizes modern, real-world applications, and gives students an intuitive understanding of the mathematics that every economist needs to know. Covers probability and statistics with mathematical rigor while emphasizing intuitive explanations that are accessible to economics students of all backgrounds Discusses random variables, parametric and multivariate distributions, sampling, the law of large numbers, central limit theory, maximum likelihood estimation, numerical optimization, hypothesis testing, and more Features hundreds of exercises that enable students to learn by doing Includes an in-depth appendix summarizing important mathematical results as well as a wealth of real-world examples Can serve as a core textbook for a first-semester PhD course in econometrics and as a companion book to Bruce E. Hansen’s Econometrics Also an invaluable reference for researchers and practitioners




Introduction to Statistics and Econometrics


Book Description

Comic Amy Schumer performs a stand-up set in San Francisco devoted to various aspects of her sex life and her feelings about her own body. ~ Perry Seibert, Rovi




Intermediate Statistics and Econometrics


Book Description

The standard introductory texts to mathematical statistics leave the Bayesian approach to be taught later in advanced topics courses-giving students the impression that Bayesian statistics provide but a few techniques appropriate in only special circumstances. Nothing could be further from the truth, argues Dale Poirier, who has developed a course for teaching comparatively both the classical and the Bayesian approaches to econometrics. Poirier's text provides a thoroughly modern, self-contained, comprehensive, and accessible treatment of the probability and statistical foundations of econometrics with special emphasis on the linear regression model. Written primarily for advanced undergraduate and graduate students who are pursuing research careers in economics, Intermediate Statistics and Econometrics offers a broad perspective, bringing together a great deal of diverse material. Its comparative approach, emphasis on regression and prediction, and numerous exercises and references provide a solid foundation for subsequent courses in econometrics and will prove a valuable resource to many nonspecialists who want to update their quantitative skills. The introduction closes with an example of a real-world data set-the Challengerspace shuttle disaster-that motivates much of the text's theoretical discussion. The ten chapters that follow cover basic concepts, special distributions, distributions of functions of random variables, sampling theory, estimation, hypothesis testing, prediction, and the linear regression model. Appendixes contain a review of matrix algebra, computation, and statistical tables.




Probability Theory and Statistical Inference


Book Description

This empirical research methods course enables informed implementation of statistical procedures, giving rise to trustworthy evidence.




Bayesian Analysis in Statistics and Econometrics


Book Description

This book is a definitive work that captures the current state of knowledge of Bayesian Analysis in Statistics and Econometrics and attempts to move it forward. It covers such topics as foundations, forecasting inferential matters, regression, computation and applications.




Essential Statistics, Regression, and Econometrics


Book Description

Essential Statistics, Regression, and Econometrics, Second Edition, is innovative in its focus on preparing students for regression/econometrics, and in its extended emphasis on statistical reasoning, real data, pitfalls in data analysis, and modeling issues. This book is uncommonly approachable and easy to use, with extensive word problems that emphasize intuition and understanding. Too many students mistakenly believe that statistics courses are too abstract, mathematical, and tedious to be useful or interesting. To demonstrate the power, elegance, and even beauty of statistical reasoning, this book provides hundreds of new and updated interesting and relevant examples, and discusses not only the uses but also the abuses of statistics. The examples are drawn from many areas to show that statistical reasoning is not an irrelevant abstraction, but an important part of everyday life. - Includes hundreds of updated and new, real-world examples to engage students in the meaning and impact of statistics - Focuses on essential information to enable students to develop their own statistical reasoning - Ideal for one-quarter or one-semester courses taught in economics, business, finance, politics, sociology, and psychology departments, as well as in law and medical schools - Accompanied by an ancillary website with an instructors solutions manual, student solutions manual and supplementing chapters




Contemporary Bayesian Econometrics and Statistics


Book Description

Tools to improve decision making in an imperfect world This publication provides readers with a thorough understanding of Bayesian analysis that is grounded in the theory of inference and optimal decision making. Contemporary Bayesian Econometrics and Statistics provides readers with state-of-the-art simulation methods and models that are used to solve complex real-world problems. Armed with a strong foundation in both theory and practical problem-solving tools, readers discover how to optimize decision making when faced with problems that involve limited or imperfect data. The book begins by examining the theoretical and mathematical foundations of Bayesian statistics to help readers understand how and why it is used in problem solving. The author then describes how modern simulation methods make Bayesian approaches practical using widely available mathematical applications software. In addition, the author details how models can be applied to specific problems, including: * Linear models and policy choices * Modeling with latent variables and missing data * Time series models and prediction * Comparison and evaluation of models The publication has been developed and fine- tuned through a decade of classroom experience, and readers will find the author's approach very engaging and accessible. There are nearly 200 examples and exercises to help readers see how effective use of Bayesian statistics enables them to make optimal decisions. MATLAB? and R computer programs are integrated throughout the book. An accompanying Web site provides readers with computer code for many examples and datasets. This publication is tailored for research professionals who use econometrics and similar statistical methods in their work. With its emphasis on practical problem solving and extensive use of examples and exercises, this is also an excellent textbook for graduate-level students in a broad range of fields, including economics, statistics, the social sciences, business, and public policy.




Mathematical Statistics for Applied Econometrics


Book Description

An Introductory Econometrics Text Mathematical Statistics for Applied Econometrics covers the basics of statistical inference in support of a subsequent course on classical econometrics. The book shows students how mathematical statistics concepts form the basis of econometric formulations. It also helps them think about statistics as more than a toolbox of techniques. Uses Computer Systems to Simplify Computation The text explores the unifying themes involved in quantifying sample information to make inferences. After developing the necessary probability theory, it presents the concepts of estimation, such as convergence, point estimators, confidence intervals, and hypothesis tests. The text then shifts from a general development of mathematical statistics to focus on applications particularly popular in economics. It delves into matrix analysis, linear models, and nonlinear econometric techniques. Students Understand the Reasons for the Results Avoiding a cookbook approach to econometrics, this textbook develops students’ theoretical understanding of statistical tools and econometric applications. It provides them with the foundation for further econometric studies.