Probing Chiral Interactions in Light Nuclei


Book Description

Chiral two- and three-nucleon interactions are studied in a few-nucleon systems. We investigate the cut-off dependence and convergence with respect to the chiral expansion. It is pointed out that the spectra of light nuclei are sensitive to the three-nucleon force structure. As an example, we present calculations of the 1{sup +} and 3{sup +} states of {sup 6}Li using the no-core shell model approach. The results show contributions of the next-to-next-to-leading order terms to the spectra, which are not correlated to the three-nucleon binding energy prediction.




Chiral Three-Nucleon Interactions in Light Nuclei, Neutron-[alpha] Scattering, and Neutron Matter


Book Description

Here we present quantum Monte Carlo calculations of light nuclei, neutron- scattering, and neutron matter using local two- and three-nucleon (3N) interactions derived from chiral e effective fi eld theory up to next-to-next-to-leading order (N2LO). The two undetermined 3N low-energy couplings are fi t to the 4He binding energy and, for the first time, to the spin-orbit splitting in the neutron- P-wave phase shifts. Furthermore, we investigate different choices of local 3N-operator structures and find that chiral interactions at N2LO are able to simultaneously reproduce the properties of A = 3; 4; 5 systems and of neutron matter, in contrast to commonly used phenomenological 3N interactions.










Mesons and Light Nuclei ’95


Book Description

The International Conference Mesons and Light Nuclei, organized by the Institute of Nuclear Physics (INP), Rez, was held during July 2 - 7, 1995 in small north Bohemian town Straz pod Ralskem. It was the sixth in a series of meetings which took place previously at Liblice 74 and 81, Bechyne 85 and 88, and Prague 91. The conferences gained already their firm position among intermediate energy nuclear physics activities. International nuclear physics community strongly supported our intention to continue the series. This year's venue for the conference was the accommodation and social area of the DIAMO company at Straz. The goal of the meeting was to summarize the present situation and the future perspectives concerning the experimental investigations and theoreti cal descriptions of light nuclei and their interactions with electromagnetic and hadronic probes, mainly at intermediate energies. The scientific program of the conference included the following areas of research: nuclear physics with pions and antiprotons, T)-meson physics, baryonic systems with strangeness, relativis tic few-body dynamics, and electroweak nuclear interaction. Representatives from many international groups working within different experimental facili ties and with different theoretical methods were invited and asked to present their latest results and future research programs. The Straz conference, attended by 102 physicist from institutions in 22 countries, was sponsored by the Austrian Ministry for Science and Research, Czech Ministry for Industry and Trade, and by SKODA PRAHA a.s. Thanks to this sponsorship we could also invite several participants and students at essentially reduced cost.













Nuclear Physics


Book Description

Dramatic progress has been made in all branches of physics since the National Research Council's 1986 decadal survey of the field. The Physics in a New Era series explores these advances and looks ahead to future goals. The series includes assessments of the major subfields and reports on several smaller subfields, and preparation has begun on an overview volume on the unity of physics, its relationships to other fields, and its contributions to national needs. Nuclear Physics is the latest volume of the series. The book describes current activity in understanding nuclear structure and symmetries, the behavior of matter at extreme densities, the role of nuclear physics in astrophysics and cosmology, and the instrumentation and facilities used by the field. It makes recommendations on the resources needed for experimental and theoretical advances in the coming decade.