Mathematical Problem Posing


Book Description

The mathematics education community continues to contribute research-based ideas for developing and improving problem posing as an inquiry-based instructional strategy for enhancing students’ learning. A large number of studies have been conducted which have covered many research topics and methodological aspects of teaching and learning mathematics through problem posing. The Authors' groundwork has shown that many of these studies predict positive outcomes from implementing problem posing on: student knowledge, problem solving and posing skills, creativity and disposition toward mathematics. This book examines, in-depth, the contribution of a problem posing approach to teaching mathematics and discusses the impact of adopting this approach on the development of theoretical frameworks, teaching practices and research on mathematical problem posing over the last 50 years. ​​




Problem Posing and Solving for Mathematically Gifted and Interested Students


Book Description

Mathematics and mathematics education research have an ongoing interest in improving our understanding of mathematical problem posing and solving. This book focuses on problem posing in a context of mathematical giftedness. The contributions particularly address where such problems come from, what properties they should have, and which differences between school mathematics and more complex kinds of mathematics exist. These perspectives are examined internationally, allowing for cross-national insights.




Research On and Activities For Mathematically Gifted Students


Book Description

This open access Topical Survey offers a brief overview of the current state of research on and activities for mathematically gifted students around the world. This is of interest to a broad readership, including educational researchers, research mathematicians, mathematics teachers, teacher educators, curriculum designers, doctoral students, and other stakeholders. It first discusses research concerning the nature of mathematical giftedness, including theoretical frameworks and methodologies that are helpful in identifying and/or creating mathematically gifted students, which is described in this section. It also focuses on research on and the development of mathematical talent and innovation in students, including connections between cognitive, social and affective aspects of mathematically gifted students. Exemplary teaching and learning practices, curricula and a variety of programs that contribute to the development of mathematical talent, gifts, and passion are described as well as the pedagogy and mathematics content suitable for educating pre-service and in-service teachers of mathematically gifted students. The final section provides a brief summary of the paper along with suggestions for the research, activities, and resources that should be available to support mathematically gifted students and their teachers, parents, and other stakeholders.




The Elements of Creativity and Giftedness in Mathematics


Book Description

The Elements of Creativity and Giftedness in Mathematics edited by Bharath Sriraman and KyeongHwa Lee covers recent advances in mathematics education pertaining to the development of creativity and giftedness. The book is international in scope in the “sense” that it includes numerous studies on mathematical creativity and giftedness conducted in the U.S.A, China, Korea, Turkey, Israel, Sweden, and Norway in addition to cross-national perspectives from Canada and Russia. The topics include problem -posing, problem-solving and mathematical creativity; the development of mathematical creativity with students, pre and in-service teachers; cross-cultural views of creativity and giftedness; the unpacking of notions and labels such as high achieving, inclusion, and potential; as well as the theoretical state of the art on the constructs of mathematical creativity and giftedness. The book also includes some contributions from the first joint meeting of the American Mathematical Society and the Korean Mathematical Society in Seoul, 2009. Topics covered in the book are essential reading for graduate students and researchers interested in researching issues and topics within the domain of mathematical creativity and mathematical giftedness. It is also accessible to pre-service and practicing teachers interested in developing creativity in their classrooms, in addition to professional development specialists, mathematics educators, gifted educators, and psychologists.




Mathematical Problem Posing


Book Description

Mathematical problem posing as the substantive formulation of mathematical problems is an activity that lies at the heart of mathematics. In recent years, research in mathematics education has endeavored to gain insights into problem posing—conceptually as well as empirically. In problem-posing research, there has been a focus on analyzing products, that is, the posed problems. Insights into the processes that lead to these products, however, have so far been lacking. Within four journal articles, summarized in this cumulative dissertation, the author attempts to contribute to the understanding of problem-posing processes through conceptual considerations and empirical investigations. The conceptual part consists of a conducted systematic literature review to investigate problem-posing situations and problem-posing activities. The studies in the empirical part deal with the analyses of problem-posing processes of pre-service mathematics teachers from a macroscopic and microscopic perspective. The aim is to develop coherent and meaningful conceptual perspectives for analyzing empirical observations of problem-posing processes.




The Art of Problem Posing


Book Description

This book encourages readers to shift their thinking about problem posing from the "other" to themselves (i.e. that they can develop problems themselves) and offers a broader conception of what can be done with problems.




Third Symposium Proceedings. New Ways of Teaching and Learning


Book Description

This volume contains the papers presented at the Third International Symposium on New Ways of Teaching & Learning held from August 6-10, 2024, at the Aemilia Hotel, Bologna, Italy. The Conference was organized by The Mathematics Education for the Future Project - an international educational project founded in 1986 and dedicated to innovation in mathematics, statistics, science and computer education world wide.




Creativity in Mathematics and the Education of Gifted Students


Book Description

This book breaks through in the field of mathematical creativity and giftedness. It suggests directions for closing the gap between research in the field of mathematics education and research in the field of creativity and giftedness. It also outlines a research agenda for further research and development in the field.




Mathematical Problem Solving


Book Description




Creativity and Giftedness


Book Description

This volume provides readers with a broad view on the variety of issues related to the educational research and practices in the field of Creativity in Mathematics and Mathematical Giftedness. The book explores (a) the relationship between creativity and giftedness; (b) empirical work with high ability (or gifted) students in the classroom and its implications for teaching mathematics; (c) interdisciplinary work which views creativity as a complex phenomena that cannot be understood from within the borders of disciplines, i.e., to present research and theorists from disciplines such as neuroscience and complexity theory; and (d) findings from psychology that pertain the creatively gifted students. As a whole, this volume brings together perspectives from mathematics educators, psychologists, neuroscientists, and teachers to present a collection of empirical, theoretical and philosophical works that address the complexity of mathematical creativity and giftedness, its origins, nature, nurture and ways forward. In keeping with the spirit of the series, the anthology substantially builds on previous ZDM volumes on interdisciplinarity (2009), creativity and giftedness (2013).