Problemi di geometria differenziale in grande


Book Description

Lectures: C.B. Allendörfer: Global differential geometry of imbedded manifolds.- Seminars: P. Libermann: Pseudo-groupes infitésimaux.




Computational Mathematics Driven by Industrial Problems


Book Description

These lecture notes by very authoritative scientists survey recent advances of mathematics driven by industrial application showing not only how mathematics is applied to industry but also how mathematics has drawn benefit from interaction with real-word problems. The famous David Report underlines that innovative high technology depends crucially for its development on innovation in mathematics. The speakers include three recent presidents of ECMI, one of ECCOMAS (in Europe) and the president of SIAM.




Quantum Cohomology


Book Description

The book gathers the lectures given at the C.I.M.E. summer school "Quantum Cohomology" held in Cetraro (Italy) from June 30th to July 8th, 1997. The lectures and the subsequent updating cover a large spectrum of the subject on the field, from the algebro-geometric point of view, to the symplectic approach, including recent developments of string-branes theories and q-hypergeometric functions.




Optimal Shape Design


Book Description

Optimal Shape Design is concerned with the optimization of some performance criterion dependent (besides the constraints of the problem) on the "shape" of some region. The main topics covered are: the optimal design of a geometrical object, for instance a wing, moving in a fluid; the optimal shape of a region (a harbor), given suitable constraints on the size of the entrance to the harbor, subject to incoming waves; the optimal design of some electrical device subject to constraints on the performance. The aim is to show that Optimal Shape Design, besides its interesting industrial applications, possesses nontrivial mathematical aspects. The main theoretical tools developed here are the homogenization method and domain variations in PDE. The style is mathematically rigorous, but specifically oriented towards applications, and it is intended for both pure and applied mathematicians. The reader is required to know classical PDE theory and basic functional analysis.




Noncommutative Geometry


Book Description

Noncommutative Geometry is one of the most deep and vital research subjects of present-day Mathematics. Its development, mainly due to Alain Connes, is providing an increasing number of applications and deeper insights for instance in Foliations, K-Theory, Index Theory, Number Theory but also in Quantum Physics of elementary particles. The purpose of the Summer School in Martina Franca was to offer a fresh invitation to the subject and closely related topics; the contributions in this volume include the four main lectures, cover advanced developments and are delivered by prominent specialists.




Real Methods in Complex and CR Geometry


Book Description

The geometry of real submanifolds in complex manifolds and the analysis of their mappings belong to the most advanced streams of contemporary Mathematics. In this area converge the techniques of various and sophisticated mathematical fields such as P.D.E.s, boundary value problems, induced equations, analytic discs in symplectic spaces, complex dynamics. For the variety of themes and the surprisingly good interplaying of different research tools, these problems attracted the attention of some among the best mathematicians of these latest two decades. They also entered as a refined content of an advanced education. In this sense the five lectures of this volume provide an excellent cultural background while giving very deep insights of current research activity.




Enumerative Invariants in Algebraic Geometry and String Theory


Book Description

Starting in the middle of the 80s, there has been a growing and fruitful interaction between algebraic geometry and certain areas of theoretical high-energy physics, especially the various versions of string theory. Physical heuristics have provided inspiration for new mathematical definitions (such as that of Gromov-Witten invariants) leading in turn to the solution of problems in enumerative geometry. Conversely, the availability of mathematically rigorous definitions and theorems has benefited the physics research by providing the required evidence in fields where experimental testing seems problematic. The aim of this volume, a result of the CIME Summer School held in Cetraro, Italy, in 2005, is to cover part of the most recent and interesting findings in this subject.




Pseudo-Differential Operators


Book Description

Pseudo-differential operators were initiated by Kohn, Nirenberg and Hörmander in the sixties of the last century. Beside applications in the general theory of partial differential equations, they have their roots also in the study of quantization first envisaged by Hermann Weyl thirty years earlier. Thanks to the understanding of the connections of wavelets with other branches of mathematical analysis, quantum physics and engineering, such operators have been used under different names as mathematical models in signal analysis since the last decade of the last century. The volume investigates the mathematics of quantization and signals in the context of pseudo-differential operators, Weyl transforms, Daubechies operators, Wick quantization and time-frequency localization operators. Applications to quantization, signal analysis and the modern theory of PDE are highlighted.




SPDE in Hydrodynamics: Recent Progress and Prospects


Book Description

Of the three lecture courses making up the CIME summer school on Fluid Dynamics at Cetraro in 2005 reflected in this volume, the first, due to Sergio Albeverio describes deterministic and stochastic models of hydrodynamics. In the second course, Franco Flandoli starts from 3D Navier-Stokes equations and ends with turbulence. Finally, Yakov Sinai, in the 3rd course, describes some rigorous mathematical results for multidimensional Navier-Stokes systems and some recent results on the one-dimensional Burgers equation with random forcing.




Geometric Analysis and PDEs


Book Description

This volume contains lecture notes on key topics in geometric analysis, a growing mathematical subject which uses analytical techniques, mostly of partial differential equations, to treat problems in differential geometry and mathematical physics.