Problems in Classical and Quantum Mechanics


Book Description

This book is a collection of problems that are intended to aid students in graduate and undergraduate courses in Classical and Quantum Physics. It is also intended to be a study aid for students that are preparing for the PhD qualifying exam. Many of the included problems are of a type that could be on a qualifying exam. Others are meant to elucidate important concepts. Unlike other compilations of problems, the detailed solutions are often accompanied by discussions that reach beyond the specific problem.The solution of the problem is only the beginning of the learning process--it is by manipulation of the solution and changing of the parameters that a great deal of insight can be gleaned. The authors refer to this technique as "massaging the problem," and it is an approach that the authors feel increases the pedagogical value of any problem.




Chaos in Classical and Quantum Mechanics


Book Description

Describes the chaos apparent in simple mechanical systems with the goal of elucidating the connections between classical and quantum mechanics. It develops the relevant ideas of the last two decades via geometric intuition rather than algebraic manipulation. The historical and cultural background against which these scientific developments have occurred is depicted, and realistic examples are discussed in detail. This book enables entry-level graduate students to tackle fresh problems in this rich field.




Mathematics of Classical and Quantum Physics


Book Description

Graduate-level text offers unified treatment of mathematics applicable to many branches of physics. Theory of vector spaces, analytic function theory, theory of integral equations, group theory, and more. Many problems. Bibliography.




Problems in Quantum Mechanics


Book Description

242 solved problems of several degrees of difficulty in nonrelativistic Quantum Mechanics, ranging from the themes of the crisis of classical physics, through the achievements in the framework of modern atomic physics, down to the still alive, more intriguing aspects connected e.g. with the EPR paradox, the Aharonov--Bohm effect, quantum teleportation.




Classical Mechanics


Book Description

Essential Advanced Physics (EAP) is a series comprising four parts: Classical Mechanics, Classical Electrodynamics, Quantum Mechanics and Statistical Mechanics. Each part consists of two volumes, Lecture notes and Problems with solutions, further supplemented by an additional collection of test problems and solutions available to qualifying university instructors. Written for graduate and advanced undergraduate students, the goal of this series is to provide readers with a knowledge base necessary for professional work in physics, be that theoretical or experimental, fundamental or applied research. From the formal point of view, it satisfies typical PhD basic course requirements at major universities. Selected parts of the series may also be valuable for graduate students and researchers in allied disciplines, including astronomy, chemistry, materials science, and mechanical, electrical, computer and electronic engineering. The EAP series is focused on the development of problem-solving skills. The following features distinguish it from other graduate-level textbooks: Concise lecture notes ( 250 pages per semester) Emphasis on simple explanations of the main concepts, ideas and phenomena of physics Sets of exercise problems, with detailed model solutions in separate companion volumes Extensive cross-referencing between the volumes, united by common style and notation Additional sets of test problems, freely available to qualifying faculty This volume, Classical Mechanics: Problems with solutions contains detailed model solutions to the exercise problems formulated in the companion Lecture notes volume. In many cases, the solutions include result discussions that enhance the lecture material. For the reader's convenience, the problem assignments are reproduced in this volume.




A Modern Approach to Quantum Mechanics


Book Description

Inspired by Richard Feynman and J.J. Sakurai, A Modern Approach to Quantum Mechanics allows lecturers to expose their undergraduates to Feynman's approach to quantum mechanics while simultaneously giving them a textbook that is well-ordered, logical and pedagogically sound. This book covers all the topics that are typically presented in a standard upper-level course in quantum mechanics, but its teaching approach is new. Rather than organizing his book according to the historical development of the field and jumping into a mathematical discussion of wave mechanics, Townsend begins his book with the quantum mechanics of spin. Thus, the first five chapters of the book succeed in laying out the fundamentals of quantum mechanics with little or no wave mechanics, so the physics is not obscured by mathematics. Starting with spin systems it gives students straightfoward examples of the structure of quantum mechanics. When wave mechanics is introduced later, students should perceive it correctly as only one aspect of quantum mechanics and not the core of the subject.




Problems in Quantum Mechanics


Book Description

Written by a pair of distinguished Soviet mathematicians, this compilation presents 160 lucidly expressed problems in nonrelativistic quantum mechanics plus completely worked-out solutions. Some were drawn from the authors' courses at the Moscow Institute of Engineering, but most were prepared especially for this book. A high-level supplement rather than a primary text, it constitutes a masterful complement to advanced undergraduate and graduate texts and courses in quantum mechanics. The mathematics employed in the proofs of the problems—asymptotic expansions of functions, Green's functions, use of different representation spaces, and simple limiting cases—are detailed and comprehensive. Virtually no space is devoted to the physical statements underlying the problems, since this is usually covered in books on quantum mechanics. Teachers and students will find this volume particularly valuable in terms of its advanced mathematics and detailed presentations, its coverage of scattering theory, and its helpful graphs and explanatory figures.




Solved Problems in Classical Mechanics


Book Description

simulated motion on a computer screen, and to study the effects of changing parameters. --




Topics in Atomic Physics


Book Description

The importance of the ?eld of atomic physics to modern technology cannot be overemphasized. Atomic physics served as a major impetus to the development of the quantum theory of matter in the early part of the twentieth century and, due to the availability of the laser as a laboratory tool, it has taken us into the twen- ?rst century with an abundance of new and exciting phenomena to understand. Our intention in writing this book is to provide a foundation for students to begin researchinmodernatomicphysics. Asthetitleimplies,itisnot,norwasitintended to be, an all-inclusive tome covering every aspect of atomic physics. Any specialized textbook necessarily re?ects the predilection of the authors toward certain aspects of the subject. This one is no exception. It re?ects our - lief that a thorough understanding of the unique properties of the hydrogen atom is essential to an understanding of atomic physics. It also re?ects our fasci- tion with the distinguished position that Mother Nature has bestowed on the pure Coulomb and Newtonian potentials, and thus hydrogen atoms and Keplerian - bits. Therefore, we have devoted a large portion of this book to the hydrogen atom toemphasizethisdistinctiveness. Weattempttostresstheuniquenessoftheattr- tive 1/r potential without delving into group theory. It is our belief that, once an understanding of the hydrogen atom is achieved, the properties of multielectron atoms can be understood as departures from hydrogenic properties.




The Theoretical Minimum


Book Description

A master teacher presents the ultimate introduction to classical mechanics for people who are serious about learning physics "Beautifully clear explanations of famously 'difficult' things," -- Wall Street Journal If you ever regretted not taking physics in college -- or simply want to know how to think like a physicist -- this is the book for you. In this bestselling introduction to classical mechanics, physicist Leonard Susskind and hacker-scientist George Hrabovsky offer a first course in physics and associated math for the ardent amateur. Challenging, lucid, and concise, The Theoretical Minimum provides a tool kit for amateur scientists to learn physics at their own pace.