Problems with a Point


Book Description

"Ever notice how people sometimes use math words inaccurately? Or how sometimes you instinctively know a math statement is false (or not known)? Each chapter of this book makes a point like those above and then illustrates the point by doing some real mathematics through step-by-step mathematical techniques. This book gives readers valuable information about how mathematics and theoretical computer science work, while teaching them some actual mathematics and computer science through examples and exercises. Much of the mathematics could be understood by a bright high school student. The points made can be understood by anyone with an interest in math, from the bright high school student to a Field's medal winner."--




Nonparametric Methods in Change Point Problems


Book Description

The explosive development of information science and technology puts in new problems involving statistical data analysis. These problems result from higher re quirements concerning the reliability of statistical decisions, the accuracy of math ematical models and the quality of control in complex systems. A new aspect of statistical analysis has emerged, closely connected with one of the basic questions of cynergetics: how to "compress" large volumes of experimental data in order to extract the most valuable information from data observed. De tection of large "homogeneous" segments of data enables one to identify "hidden" regularities in an object's behavior, to create mathematical models for each seg ment of homogeneity, to choose an appropriate control, etc. Statistical methods dealing with the detection of changes in the characteristics of random processes can be of great use in all these problems. These methods have accompanied the rapid growth in data beginning from the middle of our century. According to a tradition of more than thirty years, we call this sphere of statistical analysis the "theory of change-point detection. " During the last fifteen years, we have witnessed many exciting developments in the theory of change-point detection. New promising directions of research have emerged, and traditional trends have flourished anew. Despite this, most of the results are widely scattered in the literature and few monographs exist. A real need has arisen for up-to-date books which present an account of important current research trends, one of which is the theory of non parametric change--point detection.




Problems of Point Blast Theory


Book Description

Problems of Point Blast Theory covers all the main topics of modern theory with the exception of applications to nova and supernova outbursts. All the presently known theoretical results are given and problems which are still to be resolved are indicated. A special feature of the book is the sophisticated mathematical approach. Of interest to specialists and graduate students working in hydrodynamics, explosion theory, plasma physics, mathematical physics, and applied mathematics.




Two-Point Boundary Value Problems: Lower and Upper Solutions


Book Description

This book introduces the method of lower and upper solutions for ordinary differential equations. This method is known to be both easy and powerful to solve second order boundary value problems. Besides an extensive introduction to the method, the first half of the book describes some recent and more involved results on this subject. These concern the combined use of the method with degree theory, with variational methods and positive operators. The second half of the book concerns applications. This part exemplifies the method and provides the reader with a fairly large introduction to the problematic of boundary value problems. Although the book concerns mainly ordinary differential equations, some attention is given to other settings such as partial differential equations or functional differential equations. A detailed history of the problem is described in the introduction.· Presents the fundamental features of the method· Construction of lower and upper solutions in problems· Working applications and illustrated theorems by examples· Description of the history of the method and Bibliographical notes




Iterative Methods for Fixed Point Problems in Hilbert Spaces


Book Description

Iterative methods for finding fixed points of non-expansive operators in Hilbert spaces have been described in many publications. In this monograph we try to present the methods in a consolidated way. We introduce several classes of operators, examine their properties, define iterative methods generated by operators from these classes and present general convergence theorems. On this basis we discuss the conditions under which particular methods converge. A large part of the results presented in this monograph can be found in various forms in the literature (although several results presented here are new). We have tried, however, to show that the convergence of a large class of iteration methods follows from general properties of some classes of operators and from some general convergence theorems.




Advanced Problems in Mathematics: Preparing for University


Book Description

This book is intended to help candidates prepare for entrance examinations in mathematics and scientific subjects, including STEP (Sixth Term Examination Paper). STEP is an examination used by Cambridge colleges as the basis for conditional offers. They are also used by Warwick University, and many other mathematics departments recommend that their applicants practice on the past papers even if they do not take the examination. Advanced Problems in Mathematics is recommended as preparation for any undergraduate mathematics course, even for students who do not plan to take the Sixth Term Examination Paper. The questions analysed in this book are all based on recent STEP questions selected to address the syllabus for Papers I and II, which is the A-level core (i.e. C1 to C4) with a few additions. Each question is followed by a comment and a full solution. The comments direct the reader's attention to key points and put the question in its true mathematical context. The solutions point students to the methodology required to address advanced mathematical problems critically and independently. This book is a must read for any student wishing to apply to scientific subjects at university level and for anybody interested in advanced mathematics.




Saddle-Point Problems and Their Iterative Solution


Book Description

This book provides essential lecture notes on solving large linear saddle-point systems, which arise in a wide range of applications and often pose computational challenges in science and engineering. The focus is on discussing the particular properties of such linear systems, and a large selection of algebraic methods for solving them, with an emphasis on iterative methods and preconditioning. The theoretical results presented here are complemented by a case study on potential fluid flow problem in a real world-application. This book is mainly intended for students of applied mathematics and scientific computing, but also of interest for researchers and engineers working on various applications. It is assumed that the reader has completed a basic course on linear algebra and numerical mathematics.




The Art of Perspective


Book Description

A writer may have a story to tell, a sense of plot, and strong characters, but for all of these to come together some key questions must be answered. What form should the narrator take? An omniscient, invisible force, or one--or more--of the characters? But in what voice, and from what vantage point? How to decide? Avoiding prescriptive instructions or arbitrary rules, Christopher Castellani brilliantly examines the various ways writers have solved the crucial point-of-view problem. By unpacking the narrative strategies at play in the work of writers as different as E. M. Forster, Grace Paley, and Tayeb Salih, among many others, he illustrates how the author's careful manipulation of distance between narrator and character drives the story. An insightful work by an award-winning novelist and the artistic director of GrubStreet, The Art of Perspective is a fascinating discussion on a subject of perpetual interest to any writer.




Algorithms for Solving Common Fixed Point Problems


Book Description

This book details approximate solutions to common fixed point problems and convex feasibility problems in the presence of perturbations. Convex feasibility problems search for a common point of a finite collection of subsets in a Hilbert space; common fixed point problems pursue a common fixed point of a finite collection of self-mappings in a Hilbert space. A variety of algorithms are considered in this book for solving both types of problems, the study of which has fueled a rapidly growing area of research. This monograph is timely and highlights the numerous applications to engineering, computed tomography, and radiation therapy planning. Totaling eight chapters, this book begins with an introduction to foundational material and moves on to examine iterative methods in metric spaces. The dynamic string-averaging methods for common fixed point problems in normed space are analyzed in Chapter 3. Dynamic string methods, for common fixed point problems in a metric space are introduced and discussed in Chapter 4. Chapter 5 is devoted to the convergence of an abstract version of the algorithm which has been called component-averaged row projections (CARP). Chapter 6 studies a proximal algorithm for finding a common zero of a family of maximal monotone operators. Chapter 7 extends the results of Chapter 6 for a dynamic string-averaging version of the proximal algorithm. In Chapters 8 subgradient projections algorithms for convex feasibility problems are examined for infinite dimensional Hilbert spaces.




Elliptic Boundary Value Problems in Domains with Point Singularities


Book Description

For graduate students and research mathematicians interested in partial differential equations and who have a basic knowledge of functional analysis. Restricted to boundary value problems formed by differential operators, avoiding the use of pseudo- differential operators. Concentrates on fundamental results such as estimates for solutions in different function spaces, the Fredholm property of the problem's operator, regularity assertions, and asymptotic formulas for the solutions of near singular points. Considers the solutions in Sobolev spaces of both positive and negative orders. Annotation copyrighted by Book News, Inc., Portland, OR