Proceedings, Fourth Conference on Numerical Simulation of Plasms
Author : United States. Naval Research Office
Publisher :
Page : 768 pages
File Size : 20,14 MB
Release : 1970
Category :
ISBN :
Author : United States. Naval Research Office
Publisher :
Page : 768 pages
File Size : 20,14 MB
Release : 1970
Category :
ISBN :
Author : Jay P. Boris
Publisher :
Page : 772 pages
File Size : 25,94 MB
Release : 1972
Category : Blood plasma
ISBN :
Author : Gianpiero Colonna
Publisher :
Page : 0 pages
File Size : 46,30 MB
Release : 2022
Category : SCIENCE
ISBN : 9780750335584
Plasma Modeling: Methods and applications presents and discusses the different approaches that can be adopted for plasma modeling, giving details about theoretical and numerical methods. It describes kinetic models used in plasma investigations, develops the theory of fluid equations and hybrid models, and discusses applications and practical problems across a range of fields. This updated second edition contains over 200 pages of new material, including an extensive new part that discusses methods to calculate data needed in plasma modeling, such as thermodynamic and transport properties, state specific rate coefficients in heavy particle collisions and electron impact cross-sections. This updated research and reference text is an excellent resource to assist and direct students and researchers who want to develop research activity in the field of plasma physics in the choice of the best model for the problem of interest.
Author :
Publisher :
Page : 98 pages
File Size : 35,35 MB
Release : 1973
Category : Plasma (Ionized gases)
ISBN :
Author : John Killeen
Publisher : Elsevier
Page : 465 pages
File Size : 18,92 MB
Release : 2012-12-02
Category : Science
ISBN : 0323149367
Methods in Computational Physics, Volume 16: Controlled Fusion considers the full variety of computer models needed for the simulation of realistic fusion devices. These computer models include time-dependent magnetohydrodynamics, plasma transport in a magnetic field, MHD and guiding-center equilibria, MHD stability of confinement systems, Vlasov and particle models, and multispecies Fokker-Planck codes. This volume is divided into 11 chapters. The first three chapters discuss various aspects of the numerical solution of the equations of magnetohydrodynamics (MHD). The subsequent chapters present the more realistic models, including the thermal conductivity and electrical resistivity. Other chapters describe two-dimensional codes with varies choice of coordinate systems, such as fixed Eulerian grid, Lagrangian descriptions, and the use of magnetic flux surfaces as coordinate surfaces. The discussion then shifts to models on the inclusion of neutrals and impurities, as well as the use of empirical transport coefficients. A chapter surveys the development of time-dependent codes to support the design and operation of major CTR experiment. The final chapters explore the electromagnetic codes in the nonradiative limit (Darwin model) where the equations are nonrelativistic and displacement currents are neglected. This book is an invaluable source for geoscientists, physicists, and mathematicians.
Author : Ismail Rafatov
Publisher : Myprint
Page : 124 pages
File Size : 47,74 MB
Release : 2020-12-13
Category :
ISBN : 9780750323611
Gas discharge plasma is the most common type of low-temperature plasma, with a large number of practical applications covering almost all areas of modern science and technology. This book is an introduction to the numerical modeling methods for gas discharge plasmas. It is intended to assist and direct graduate students and junior researchers, whose research activity deals with computational plasma physics. Topics covered include the essentials of basic modelling approaches (particle, fluid, and hybrid) for gas discharges, and the implementation of these methods with examples of glow (DC and RF) discharges. Numerical studies of nonlinear dynamics and formation of spatio-temporal patterns in gas discharge systems are also presented. Key Features Focuses solely on gas discharge plasmas Covers basic modelling techniques, including particle, fluid, and hybrid Provides details of applications and implementation for the considered methods Special emphasis is given to the applicability and reliability of different modelling techniques Provides specific examples of numerical simulations of the gas discharge plasmas
Author : Charles K. Birdsall
Publisher : Elsevier
Page : 287 pages
File Size : 13,56 MB
Release : 1966-01-01
Category : Technology & Engineering
ISBN : 032316241X
Electron Dynamics of Diode Regions describes the model construction and analysis of motion of charged particles of diode regions in time-varying fields. The models analyzed are simplified versions of parts of practical devices, primarily active microwave devices, tubes, and semiconductor amplifiers, while the most striking results obtained are due to electron inertia and space-charge effects in terms of laboratory observable. This book is composed of seven chapters, and begins with an introduction to the general concepts of time dependent flow, including induced current, the techniques of linearization, calculating variational transit time, and obtaining equivalent circuits. The following chapters present the classical linear analysis, which includes the space-charge effects, with several applications. These chapters also explore the existence of a maximum stable current in a space-charge limited diode. The discussion then shifts to the basics of high velocity, klystron, gap with nonuniform field distributions, and the application of the multicavity klystron. This text further covers the analysis and examples of crossed-field gaps. The final chapters deal with the fundamentals of velocity and current distributions obtained from common electron emitters, with some attempt to show how the multivelocity streams evolve into single-velocity equivalents needed for the methods of earlier chapters. Results of applying the Lagrangian starting analysis to semiconductor diode regions, necessarily from a new equation of motion, are also provided. This book is intended for graduate courses, seminars, and research studies.
Author : Diederik Depla
Publisher : Springer Science & Business Media
Page : 584 pages
File Size : 10,24 MB
Release : 2008-06-24
Category : Technology & Engineering
ISBN : 3540766642
In this valuable work, all aspects of the reactive magnetron sputtering process, from the discharge up to the resulting thin film growth, are described in detail, allowing the reader to understand the complete process. Hence, this book gives necessary information for those who want to start with reactive magnetron sputtering, understand and investigate the technique, control their sputtering process and tune their existing process, obtaining the desired thin films.
Author : Jörg Büchner
Publisher : Springer Nature
Page : 427 pages
File Size : 15,41 MB
Release : 2023-03-01
Category : Science
ISBN : 3031118707
This book is a collection of contributions covering the major subjects in numerical simulation of space and astrophysical plasma. It introduces the different approaches and methods to model plasma, the necessary computational codes, and applications in the field. The book is rooted in the previous work Space Plasma Simulation (Springer, 2003) and includes the latest developments. It is divided into three parts and all chapters start with an introduction motivating the topic and its use in research and ends with a discussion of its applications. The chapters of the first part contain tutorials of the different basic approaches needed to perform space plasma simulations. This part is particularly useful for graduate students to master the subject. The second part presents more advanced materials for students and researchers who already work with pre-existing codes but want to implement the recent progresses made in the field. The last part of the book discusses developments in the area for researchers who are actively working on advanced simulation approaches like higher order schemes and artificial intelligence, agent-based technologies for multiscale and multi-dimensional systems, which represent the recent innovative contributions made in space plasma research.
Author : Adam T. Drobot
Publisher : Springer Science & Business Media
Page : 466 pages
File Size : 23,9 MB
Release : 2012-12-06
Category : Computers
ISBN : 1461230926
This volume, which contains 15 contributions, is based on a minicourse held at the 1987 IEEE Plasma Science Meeting. The purpose of the lectures in the course was to acquaint the students with the multidisciplinary nature of computational techniques and the breadth of research areas in plasma science in which computation can address important physics and engineering design issues. These involve: electric and magnetic fields, MHD equations, chemistry, radiation, ionization etc. The contents of the contributions, written subsequent to the minicourse, stress important aspects of computer applications. They are: 1) the numerical methods used; 2) the range of applicability; 3) how the methods are actually employed in research and in the design of devices; and, as a compendium, 4) the multiplicity of approaches possible for any one problem. The materials in this book are organized by both subject and applications which display some of the richness in computational plasma physics.