Proceedings of 8th GACM Colloquium on Computational Mechanics


Book Description

This conference book contains papers presented at the 8th GACM Colloquium on Computational Mechanics for Young Scientists from Academia and Industry. The conference was held from August 28th – 30th, 2019 in Kassel, hosted by the Institute of Mechanics and Dynamics of the department for civil and environmental engineering and by the chair of Engineering Mechanics / Continuum Mechanics of the department for mechanical engineering of the University of Kassel. The aim of the conference is, to bring together young scientits who are engaged in academic and industrial research on Computational Mechanics and Computer Methods in Applied Sciences. It provides a plattform to present and discuss recent results from research efforts and industrial applications. In more than 150 presentations, given by young scientists, current scientific developments and advances in engineering practice in this field are presented and discussed. The contributions of the young researchers are supplemented by a poster session and plenary talks from four senior scientists from academia and industry as well as from the GACM Best PhD Award winners 2017 and 2018.




Theoretical Analyses, Computations, and Experiments of Multiscale Materials


Book Description

This book is devoted to the 60th birthday of the Prof. Francesco dell’Isola, who is known for his long-term contribution in the field of multiscale materials. It contains several contributions from researchers in the field, covering theoretical analyses, computational aspects and experiments.




Hybrid Bulk Metal Components


Book Description

In recent years, the requirements for technical components have steadily been increasing. This development is intensified by the desire for products with a lower weight, smaller size, and extended functionality, but also with a higher resistance against specific stresses. Mono-material components, which are produced by established processes, feature limited properties according to their respective material characteristics. Thus, a significant increase in production quality and efficiency can only be reached by combining different materials in a hybrid metal component. In this way, components with tailored properties can be manufactured that meet the locally varying requirements. Through the local use of different materials within a component, for example, the weight or the use of expensive alloying elements can be reduced. The aim of this Special Issue is to cover the recent progress and new developments regarding all aspects of hybrid bulk metal components. This includes fundamental questions regarding the joining, forming, finishing, simulation, and testing of hybrid metal parts.




Non-standard Discretisation Methods in Solid Mechanics


Book Description

This edited volume summarizes research being pursued within the DFG Priority Programme 1748: "Reliable Simulation Methods in Solid Mechanics. Development of non-standard discretisation methods, mechanical and mathematical analysis", the aim of which was to develop novel discretisation methods based e.g. on mixed finite element methods, isogeometric approaches as well as discontinuous Galerkin formulations, including a sound mathematical analysis for geometrically as well as physically nonlinear problems. The Priority Programme has established an international framework for mechanical and applied mathematical research to pursue open challenges on an inter-disciplinary level. The compiled results can be understood as state of the art in the research field and show promising ways of further research in the respective areas. The book is intended for doctoral and post-doctoral students in civil engineering, mechanical engineering, applied mathematics and physics, as well as industrial researchers interested in the field.




Springer Handbook of Aerogels


Book Description

This indispensable handbook provides comprehensive coverage of the current state-of-the-art in inorganic, organic, and composite aerogels – from synthesis and characterization to cutting-edge applications and their potential market impact. Built upon Springer’s successful Aerogels Handbook published in 2011, this handbook features extensive revisions and timely updates, reflecting the changes in this fast-growing field. Aerogels are the lightest solids known to man. Up to 1000 times lighter than glass and with a density only four times that of air, they possess extraordinarily high thermal, electrical, and acoustic insulation properties, and boast numerous entries in Guinness World Records. Originally based on silica, R&D efforts have extended this class of materials to incorporate non-silicate inorganic oxides, natural and synthetic organic polymers, carbon, metal, and ceramic materials. Composite systems involving polymer-crosslinked aerogels and interpenetrating hybrid networks have been developed and exhibit remarkable mechanical strength and flexibility. Even more exotic aerogels based on clays, chalcogenides, phosphides, quantum dots, and biopolymers such as chitosan are opening new applications for the construction, transportation, energy, defense and healthcare industries. Applications in electronics, chemistry, mechanics, engineering, energy production and storage, sensors, medicine, nanotechnology, military and aerospace, oil and gas recovery, thermal insulation, and household uses are being developed. Readers of this fully updated and expanded edition will find an exhaustive source for all aerogel materials known today, their fabrication, upscaling aspects, physical and chemical properties, and the most recent advances towards applications and commercial use. This key reference is essential reading for a combined audience of graduate students, academic researchers, and industry professionals.




Constitutive Models for Rubber XII


Book Description

Constitutive Models for Rubber XII is a comprehensive compilation of the oral and poster contributions to the XII European Conference on Constitutive Models for Rubbers (Milan, Italy, 7-9 September 2022). As the first after the COVID Pandemic, the XII edition again brought together researchers from the industry and the academia working in the field of elastomer technology and science to discuss the most recent advancement in the following topics: • Constitutive models • Micro-structural investigations • Experimental methods and characterization • Numerical methods • Fatigue and fracture • Aging • Industrial applications • Smart elastomer materials: applications and modelling Including more than 80 contributions from authors from around the world, this book aims at professionals and academics interested in elastomer technology and science.




Solid (Bio)mechanics: Challenges of the Next Decade


Book Description

This book offers a comprehensive and timely overview of the latest developments in the field of biomechanics and extensive knowledge of tissue structure, function, and modeling. Gathering chapters written by authoritative scientists, it reports on a range of continuum and computational models of solids, and related experimental works, for biomechanical applications. It discusses cutting-edge advances such as constitutive modeling and computational simulation of biological tissues and organs under physiological and pathological conditions, and their mechanical characterization. It covers innovative studies on arteries, heart, valvular tissue, and thrombus, brain tumor, muscle, liver, kidney, and stomach, among others. Written in honor of Professor Gerhard A. Holzapfel, the book provides specialized readers with a thorough and timely overview of different types of modeling in biomechanics, and current knowledge about biological structures and function.




Microstructure generation and micromechanical modeling of sheet molding compound composites


Book Description

Wir präsentieren einen Algorithmus zur schnellen Erzeugung von SMC Mikrostrukturen hoher Güte, durch Verwendung einer exakten Schließung und eines quasi-zufälligen Samplings. Darüber hinaus stellen wir ein modulares Framework zur Modellierung anisotroper Schädigung vor. Unser Konzept der Extraktionstensoren und Schädigungsfunktionen ermöglicht die Beschreibung komplexer Vorgänge. Darüber hinaus schlagen wir einen ganzheitlichen Multiskalenansatz zur Bestimmung anisotroper Versagenskriterien vor. - We introduce an algorithm that allows for a fast generation of SMC composite microstructures. An exact closure approximation and a quasi-random orientation sampling ensure high fidelity. Furthermore, we present a modular framework for anisotropic damage evolution. Our concept of extraction tensors and damage-hardening functions enables the description of complex damage-degradation. In addition, we propose a holistic multiscale approach for constructing anisotropic failure criteria.




Informatics in Control, Automation and Robotics


Book Description

This book focuses on the latest endeavors relating researches and developments conducted in fields of control, robotics and automation. Through more than ten revised and extended articles, the present book aims to provide the most up-to-date state of the art of the aforementioned fields allowing researcher, Ph.D. students and engineers not only updating their knowledge but also benefiting from the source of inspiration that represents the set of selected articles of the book. The deliberate intention of editors to cover as well theoretical facets of those fields as their practical accomplishments and implementations offers the benefit of gathering in the same volume a factual and well-balanced prospect of nowadays research in those topics. Special attention toward “Intelligent Robots and Control” may characterize another benefit of this book.




Recent Advances in Computational Mechanics and Simulations


Book Description

This book presents selected papers from the 7th International Congress on Computational Mechanics and Simulation, held at IIT Mandi, India. The papers discuss the development of mathematical models representing physical phenomena and apply modern computing methods to analyze a broad range of applications including civil, offshore, aerospace, automotive, naval and nuclear structures. Special emphasis is given on simulation of structural response under extreme loading such as earthquake, blast etc. The book is of interest to researchers and academics from civil engineering, mechanical engineering, aerospace engineering, materials engineering/science, physics, mathematics and other disciplines.