Biosafety of Forest Transgenic Trees


Book Description

This book provides up-to-date information on the environmental impact of transgenic trees on genetically modified tree (GMT) communication strategy. It is useful to public/private organisations as well as to private and public research bodies and universities worldwide since it reports on the global status of GMT research and policy. A high number of genetically modified trees (GMTs) with altered or novel characteristics have been produced in the last 15 years. However, their very low public acceptance is a basic problem in their commercialization. Breeders anticipate economic and ecological benefits, like reduced product costs and less pressure on native forests, while opponents fear risks, such as unintended spread of GMTs. But what is true? To answer this question, the COST Action FP0905 focused on key aspects related to GMTs: (a) biological characterization; (b) assessment of possible environmental impacts; (c) socio-economic implications and public acceptance/concerns; (d) providing science-based information to communicate with the public.







Mediterranean Oaks Network


Book Description







Forest Genetics


Book Description

This book, which contains 20 chapters, integrates the varied subdisciplines of genetics and their applications in gene conservation, tree improvement and biotechnology. Topics covered include: genetic variation in natural forests, the application of genetics in tree improvement and breeding programmes, and genomic sequences and molecular technologies. This book will be a valuable resource for students, scientists and professionals in the plant sciences, especially forest geneticists, tree breeders, forest managers and other natural resource specialists.




Molecular Marker Systems in Plant Breeding and Crop Improvement


Book Description

Successful release of new and better crop varieties increasingly requires genomics and molecular biology. This volume presents basic information on plant molecular marker techniques from marker location up to gene cloning. The text includes a description of technical approaches in genome analysis such as comparison of marker systems, positional cloning, and array techniques in 19 crop plants.




Forest Genomics and Biotechnology


Book Description

This Research Topic addresses research in genomics and biotechnology to improve the growth and quality of forest trees for wood, pulp, biorefineries and carbon capture. Forests are the world’s greatest repository of terrestrial biomass and biodiversity. Forests serve critical ecological services, supporting the preservation of fauna and flora, and water resources. Planted forests also offer a renewable source of timber, for pulp and paper production, and the biorefinery. Despite their fundamental role for society, thousands of hectares of forests are lost annually due to deforestation, pests, pathogens and urban development. As a consequence, there is an increasing need to develop trees that are more productive under lower inputs, while understanding how they adapt to the environment and respond to biotic and abiotic stress. Forest genomics and biotechnology, disciplines that study the genetic composition of trees and the methods required to modify them, began over a quarter of a century ago with the development of the first genetic maps and establishment of early methods of genetic transformation. Since then, genomics and biotechnology have impacted all research areas of forestry. Genome analyses of tree populations have uncovered genes involved in adaptation and response to biotic and abiotic stress. Genes that regulate growth and development have been identified, and in many cases their mechanisms of action have been described. Genetic transformation is now widely used to understand the roles of genes and to develop germplasm that is more suitable for commercial tree plantations. However, in contrast to many annual crops that have benefited from centuries of domestication and extensive genomic and biotechnology research, in forestry the field is still in its infancy. Thus, tremendous opportunities remain unexplored. This Research Topic aims to briefly summarize recent findings, to discuss long-term goals and to think ahead about future developments and how this can be applied to improve growth and quality of forest trees.







Genomics of Tree Crops


Book Description

Trees that are indispensably supportive to human life pose a formidable challenge to breed them to suit to human needs. From soft drinks to breweries to beverages to oil to tires, the value added products from trees give a spectrum of products to human kind. While attempts to tap these resources through conventional breeding are underway, the quick and elegant way of manipulating the genetic systems at the genome level is an essential chapter of modern science. Books featuring genomics of tree crops are few, and genomics is such a science that changes rapidly. Genomics of Tree Crops is an earnest attempt towards compiling genomics of tree crops. Plant genomics has made monumental strides in the last decade providing insights into intra-genomic phenomena such as heterosis, epistasis, pleiotropy and other interactions between loci and alleles within the genome. In contrast, the investigation of the roles and functions of single genes is a primary focus of molecular biology and is a common topic of modern genetic research. A genome is the sum total of all of an individual organism's genes. Thus, genomics is the study of all the genes of a cell, or tissue, at the DNA (genotype), mRNA (transcriptome), or protein (proteome) levels. The complete sequencing of the three billion base pair human genome with 25,000 genes identified and the invention of DNA microarrays ushered in a new era in the science of genomics leading to explosive advancements in oncology diagnostics. This impetus into the genomics era lead the way toward advances in plant genomics which started with Arabidopsis thaliana and went through an array of crops such as rice, maize, papaya, various cereals and legumes, with pigeon pea added to the list towards the end of 2011. Trees, on the other hand, are the least attended taxa with regard to genomic research. Some of the areas that attained attention of the scientists are: DNA sequencing, bioinformatics, genomics of flowering, gene flow, spatial structure, local adaptation and assisted migration in trees, transformation of fruit trees, genomics of tropical and temperate fruit trees, genomics of Hevea rubber, genomics of papaya and genomics of palms. Genomics of Tree Crops compiles this information with chapters authored by experts on these crops.