Transport Phenomena In Thermal Control


Book Description

A collection of research papers into transport phenomena in thermal control, closely related to several important aspects of cooling technology. Articles provide overviews of current advances and details of individual technologies including electronic and turbine cooling and Marangoni convection.




Two-Phase Heat Transfer Enhancement


Book Description

This Brief concerns heat transfer and pressure drop in heat transfer enhancement for boiling and condensation. The authors divide their topic into six areas: abrasive treatment and coatings, combined structured and porous surfaces, basic principles of boiling mechanism, vapor space condensation, convective vaporization, and forced condensation inside tubes. Within this framework, the book examines range of specific phenomena including abrasive treatment, open grooves, 3D cavities, etched surfaces, electroplating, pierced 3D cover sheets, attached wire and screen promoters, non-wetting coatings, oxide and ceramic coatings, porous surfaces, structured surfaces (integral roughness), combined structured and porous surfaces, composite surfaces, single-tube pool boiling tests, theoretical fundamentals like liquid superheat, effect of cavity shape and contact angle on superheat, entrapment of vapor in cavities, nucleation at a surface cavity, effect of dissolved gases, bubble departure diameter, bubble dynamics, boiling hysteresis and orientation effects, basic principles of boiling mechanism, visualization and mechanism of boiling in subsurface tunnels, and Chien and Webb parametric boiling studies.




Encyclopedia Of Thermal Packaging - Set 1: Thermal Packaging Techniques (A 6-volume Set)


Book Description

remove This Encyclopedia comes in 3 sets. To check out Set 2 and Set 3, please visit Set 2: Thermal Packaging Tools and Set 3: Thermal Packaging Applications /remove Thermal and mechanical packaging — the enabling technologies for the physical implementation of electronic systems - are responsible for much of the progress in miniaturization, reliability, and functional density achieved by electronic, microelectronic, and nanoelectronic products during the past 50 years. The inherent inefficiency of electronic devices and their sensitivity to heat have placed thermal packaging on the critical path of nearly every product development effort in traditional, as well as emerging, electronic product categories.Successful thermal packaging is the key differentiator in electronic products, as diverse as supercomputers and cell phones, and continues to be of pivotal importance in the refinement of traditional products and in the development of products for new applications. The Encyclopedia of Thermal Packaging, compiled in multi-volume sets (Set 1: Thermal Packaging Techniques, Set 2: Thermal Packaging Tools, Set 3: Thermal Packaging Applications, and Set 4: Thermal Packaging Configurations) will provide a comprehensive, one-stop treatment of the techniques, tools, applications, and configurations of electronic thermal packaging. Each of the author-written sets presents the accumulated wisdom and shared perspectives of a few luminaries in the thermal management of electronics.Set 1: Thermal Packaging TechniquesThe first set of the Encyclopedia, Thermal Packaging Techniques, focuses on the technology “building blocks” used to assemble a complete thermal management system and provide detailed descriptions of the underlying phenomena, modeling equations, and correlations, as well as guidance for achieving the optimal designs of individual “building blocks” and their insertion in the overall thermal solution. Specific volumes deal with microchannel coolers, cold plates, immersion cooling modules, thermoelectric microcoolers, and cooling devices for solid state lighting systems, as well as techniques and procedures for the experimental characterization of thermal management components. These “building blocks” are the essential elements in the creation of a complete, cost-effective thermal management system.The four sets in the Encyclopedia of Thermal Packaging will provide the novice and student with a complete reference for a quick ascent on the thermal packaging ';learning curve,'; the practitioner with a validated set of techniques and tools to face every challenge, and researchers with a clear definition of the state-of-the-art and emerging needs to guide their future efforts. This encyclopedia will, thus, be of great interest to packaging engineers, electronic product development engineers, and product managers, as well as to researchers in thermal management of electronic and photonic components and systems, and most beneficial to undergraduate and graduate students studying mechanical, electrical, and electronic engineering.