The Electronic Structures of Solids


Book Description

The Electronic Structures of Solids aims to provide students of solid state physics with the essential concepts they will need in considering properties of solids that depend on their electronic structures and idea of the electronic character of particular materials and groups of materials. The book first discusses the electronic structure of atoms, including hydrogen atom and many-electron atom. The text also underscores bonding between atoms and electrons in metals. Discussions focus on bonding energies and structures in the solid elements, eigenstates of free-electron gas, and electrical conductivity. The manuscript reviews the presence of electrons in metals, as well as consequences of the periodic potential; Brillouin zones and the nearly-free-electron model; electronic structures of the metallic elements; and calculation of band structures. The text also ponders on metals, insulators, and semiconductors. Topics include full and empty bands, compound and doped semiconductors, optical properties of solids, and the dynamics of electron and holes. The book is a dependable reference for readers and students of solid state physics interested in the electronic structure of solids.




Electronic Properties of Solids Using Cluster Methods


Book Description

Proceedings of a Summer School at Michigan State University held in East Lansing, Michigan, July 17-19, 1994




Electronic Structure and Physical Properties of Solids


Book Description

A very comprehensive book, enabling the reader to understand the basic formalisms used in electronic structure determination and particularly the "Muffin Tin Orbitals" methods. The latest developments are presented, providing a very detailed description of the "Full Potential" schemes. This book will provide a real state of the art, since almost all of the contributions on formalism have not been, and will not be, published elsewhere. This book will become a standard reference volume. Moreover, applications in very active fields of today's research on magnetism are presented. A wide spectrum of such questions is covered by this book. For instance, the paper on interlayer exchange coupling should become a "classic", since there has been fantastic experimental activity for 10 years and this can be considered to be the "final" theoretical answer to this question. This work has never been presented in such a complete form.




Electronic Structure, Dynamics, and Quantum Structural Properties of Condensed Matter


Book Description

The 1984 Advanced Study Institute on "Electronic Structure, Dynamics and Quantum Structural Properties of Condensed Matter" took place at the Corsendonk Conference Center, close to the City of Antwerpen, from July 16 till 27, 1984. This NATO Advanced Study Institute was motivated by the research in my Institute, where, in 1971, a project was started on "ab-initio" phonon calculations in Silicon. I~ is my pleasure to thank several instances and people who made this ASI possible. First of all, the sponsor of the Institute, the NATO Scientific Committee. Next, the co-sponsors: Agfa-Gevaert, Bell Telephone Mfg. Co. N.V., C & A, Esso Belgium·, CDC Belgium, Janssens Pharmaceutica, Kredietbank and the Scientific Office of the U.S. Army. Special thanks are due to Dr. P. Van Camp and Drs. H. Nachtegaele, who, over several months, prepared the practical aspects of the ASI with the secretarial help of Mrs. R.-M. Vandekerkhof. I also like to. thank Mrs. M. Cuyvers who prepared and organized the subject and material index and Mrs. H. Evans for typing-assist ance. I express particular gratitude to Mrs. F. Nedee, who, like in 1981 and 1982, has put the magnificent Corsendonk Conference Center at our disposal and to Mr. D. Van Der Brempt, Director of the Corsendonk Conference Center, for the efficient way in which he and his staff took care of the practical organization at the Conference Center.




Orbital Approach to the Electronic Structure of Solids


Book Description

This book provides an intuitive yet sound understanding of how structure and properties of solids may be related. The natural link is provided by the band theory approach to the electronic structure of solids. The chemically insightful concept of orbital interaction and the essential machinery of band theory are used throughout the book to build links between the crystal and electronic structure of periodic systems. In such a way, it is shown how important tools for understanding properties of solids like the density of states, the Fermi surface etc. can be qualitatively sketched and used to either understand the results of quantitative calculations or to rationalize experimental observations. Extensive use of the orbital interaction approach appears to be a very efficient way of building bridges between physically and chemically based notions to understand the structure and properties of solids.




Electronic Structure


Book Description

This book is the second volume in the Handbook of Surface Science series and deals with aspects of the electronic structure of surfaces as investigated by means of the experimental and theoretical methods of physics. The importance of understanding surface phenomena stems from the fact that for many physical and chemical phenomena, the surface plays a key role: in electronic, magnetic, and optical devices, in heterogenous catalysis, in epitaxial growth, and the application of protective coatings, for example. Therefore a better understanding and, ultimately, a predictive description of surface and interface properties is vital for the progress of modern technology. An investigation of surface electronic structure is also central to our understanding of all aspects of surfaces from a fundamental point of view. The chapters presented here review the goals achieved in the field and map out the challenges ahead, both in experiment and theory.




Reactivity of Solids


Book Description




Electronic Structure


Book Description

"The study of electronic structure of materials is at a momentous stage, with new computational methods and advances in basic theory. Many properties of materials can be determined from the fundamental equations, and electronic structure theory is now an integral part of research in physics, chemistry, materials science and other fields. This book provides a unified exposition of the theory and methods, with emphasis on understanding each essential component. New in the second edition are recent advances in density functional theory, an introduction to Berry phases and topological insulators explained in terms of elementary band theory, and many new examples of applications. Graduate students and research scientists will find careful explanations with references to original papers, pertinent reviews, and accessible books. Each chapter includes a short list of the most relevant works and exercises that reveal salient points and challenge the reader"--