ECML PKDD 2020 Workshops


Book Description

This volume constitutes the refereed proceedings of the workshops which complemented the 20th Joint European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD, held in September 2020. Due to the COVID-19 pandemic the conference and workshops were held online. The 43 papers presented in volume were carefully reviewed and selected from numerous submissions. The volume presents the papers that have been accepted for the following workshops: 5th Workshop on Data Science for Social Good, SoGood 2020; Workshop on Parallel, Distributed and Federated Learning, PDFL 2020; Second Workshop on Machine Learning for Cybersecurity, MLCS 2020, 9th International Workshop on New Frontiers in Mining Complex Patterns, NFMCP 2020, Workshop on Data Integration and Applications, DINA 2020, Second Workshop on Evaluation and Experimental Design in Data Mining and Machine Learning, EDML 2020, Second International Workshop on eXplainable Knowledge Discovery in Data Mining, XKDD 2020; 8th International Workshop on News Recommendation and Analytics, INRA 2020. The papers from INRA 2020 are published open access and licensed under the terms of the Creative Commons Attribution 4.0 International License.




Session-Based Recommender Systems Using Deep Learning


Book Description

This book focuses on the widespread use of deep neural networks and their various techniques in session-based recommender systems (SBRS). It presents the success of using deep learning techniques in many SBRS applications from different perspectives. For this purpose, the concepts and fundamentals of SBRS are fully elaborated, and different deep learning techniques focusing on the development of SBRS are studied. The book is well-modularized, and each chapter can be read in a stand-alone manner based on individual interests and needs. In the first chapter of the book, definitions and concepts related to SBRS are reviewed, and a taxonomy of different SBRS approaches is presented, where the characteristics and applications of each class are discussed separately. The second chapter starts with the basic concepts of deep learning and the characteristics of each model. Then, each deep learning model, along with its architecture and mathematical foundations, is introduced. Next, chapter 3 analyses different approaches of deep discriminative models in session-based recommender systems. In the fourth chapter, session-based recommender systems that benefit from deep generative neural networks are discussed. Subsequently, chapter 5 discusses session-based recommender systems using advanced/hybrid deep learning models. Eventually, chapter 6 reviews different learning-to-rank methods focusing on information retrieval and recommender system domains. Finally, the results of the investigations and findings from the research review conducted throughout the book are presented in a conclusive summary. This book aims at researchers who intend to use deep learning models to solve the challenges related to SBRS. The target audience includes researchers entering the field, graduate students specializing in recommender systems, web data mining, information retrieval, or machine/deep learning, and advanced industry developers working on recommender systems.




Recommender Systems Handbook


Book Description

This third edition handbook describes in detail the classical methods as well as extensions and novel approaches that were more recently introduced within this field. It consists of five parts: general recommendation techniques, special recommendation techniques, value and impact of recommender systems, human computer interaction, and applications. The first part presents the most popular and fundamental techniques currently used for building recommender systems, such as collaborative filtering, semantic-based methods, recommender systems based on implicit feedback, neural networks and context-aware methods. The second part of this handbook introduces more advanced recommendation techniques, such as session-based recommender systems, adversarial machine learning for recommender systems, group recommendation techniques, reciprocal recommenders systems, natural language techniques for recommender systems and cross-domain approaches to recommender systems. The third part covers a wide perspective to the evaluation of recommender systems with papers on methods for evaluating recommender systems, their value and impact, the multi-stakeholder perspective of recommender systems, the analysis of the fairness, novelty and diversity in recommender systems. The fourth part contains a few chapters on the human computer dimension of recommender systems, with research on the role of explanation, the user personality and how to effectively support individual and group decision with recommender systems. The last part focusses on application in several important areas, such as, food, music, fashion and multimedia recommendation. This informative third edition handbook provides a comprehensive, yet concise and convenient reference source to recommender systems for researchers and advanced-level students focused on computer science and data science. Professionals working in data analytics that are using recommendation and personalization techniques will also find this handbook a useful tool.




MultiMedia Modeling


Book Description

The two-volume set LNCS 12572 and 1273 constitutes the thoroughly refereed proceedings of the 27th International Conference on MultiMedia Modeling, MMM 2021, held in Prague, Czech Republic, in June2021. Of the 211 submitted regular papers, 40 papers were selected for oral presentation and 33 for poster presentation; 16 special session papers were accepted as well as 2 papers for a demo presentation and 17 papers for participation at the Video Browser Showdown 2021. The papers cover topics such as: multimedia indexing; multimedia mining; multimedia abstraction and summarization; multimedia annotation, tagging and recommendation; multimodal analysis for retrieval applications; semantic analysis of multimedia and contextual data; multimedia fusion methods; multimedia hyperlinking; media content browsing and retrieval tools; media representation and algorithms; audio, image, video processing, coding and compression; multimedia sensors and interaction modes; multimedia privacy, security and content protection; multimedia standards and related issues; advances in multimedia networking and streaming; multimedia databases, content delivery and transport; wireless and mobile multimedia networking; multi-camera and multi-view systems; augmented and virtual reality, virtual environments; real-time and interactive multimedia applications; mobile multimedia applications; multimedia web applications; multimedia authoring and personalization; interactive multimedia and interfaces; sensor networks; social and educational multimedia applications; and emerging trends.




Business Intelligence


Book Description

This book constitutes the proceedings of the 7th International Conference on Business Intelligence, CBI 2022, which took place in Khouribga, Morocco, during May 26-28, 2022. The 23 full papers included in this book were carefully reviewed and selected from a total of 68 submissions. They were organized in topical sections as follows: decision support and artificial intelligence; business intelligence and database; and optimization and dynamic programming.




Music Information Retrieval


Book Description

Music Information Retrieval: Recent Developments and Applications surveys the young but established field of research that is Music Information Retrieval (MIR). In doing so, it pays particular attention to the latest developments in MIR, such as semantic auto-tagging and user-centric retrieval and recommendation approaches. Music Information Retrieval: Recent Developments and Applications starts by reviewing the well-established and proven methods for feature extraction and music indexing, from both the audio signal and contextual data sources about music items, such as web pages or collaborative tags. These in turn enable a wide variety of music retrieval tasks, such as semantic music search or music identification ("query by example"). Subsequently, it elaborates on the current work on user analysis and modeling in the context of music recommendation and retrieval, addressing the recent trend towards user-centric and adaptive approaches and systems. A discussion follows about the important aspect of how various MIR approaches to different problems are evaluated and compared. It concludes with a discussion about the major open challenges facing MIR.




Fuzzy Systems and Data Mining VI


Book Description

The interdisciplinary field of fuzzy logic encompass applications in the electrical, industrial, chemical and engineering realms as well as in areas of management and environmental issues, while data mining covers new approaches to big data, massive data, and scalable, parallel and distributed algorithms. This book presents papers from the 6th International Conference on Fuzzy Systems and Data Mining (FSDM 2020). The conference was originally due to be held from 13-16 November 2020 in Xiamen, China, but was changed to an online conference held on the same dates due to ongoing restrictions connected with the COVID-19 pandemic. The annual FSDM conference provides a platform for knowledge exchange between international experts, researchers academics and delegates from industry. This year, the committee received 316 submissions, of which 76 papers were selected for inclusion in the conference; an acceptance rate of 24%. The conference covers four main areas: fuzzy theory; algorithms and systems, which includes topics like stability; foundations and control; and fuzzy applications, which are widely used and cover various types of processing as well as hardware and architecture for big data and time series. Providing a current overview of research and developments in fuzzy logic and data mining, the book will be of interest to all those working in the field of data science.







Progress in Advanced Computing and Intelligent Engineering


Book Description

This book features high-quality research papers presented at the 4th International Conference on Advanced Computing and Intelligent Engineering (ICACIE 2019), Department of Computer Science, Rama Devi Women’s University, Bhubaneswar, Odisha, India. It includes sections describing technical advances and contemporary research in the fields of advanced computing and intelligent engineering, which are based on the presented articles. Intended for postgraduate students and researchers working in the discipline of computer science and engineering, the book also appeals to researchers in the domain of electronics as it covers hardware technologies and future communication technologies.




Collaborative Recommendations: Algorithms, Practical Challenges And Applications


Book Description

Recommender systems are very popular nowadays, as both an academic research field and services provided by numerous companies for e-commerce, multimedia and Web content. Collaborative-based methods have been the focus of recommender systems research for more than two decades.The unique feature of the compendium is the technical details of collaborative recommenders. The book chapters include algorithm implementations, elaborate on practical issues faced when deploying these algorithms in large-scale systems, describe various optimizations and decisions made, and list parameters of the algorithms.This must-have title is a useful reference materials for researchers, IT professionals and those keen to incorporate recommendation technologies into their systems and services.