Neural Networks And Expert Systems In Medicine And Healthcare - Proceedings Of The Third International Conference


Book Description

Interest in medical expert systems, neural networks and other artificial intelligence techniques is on the increase as more healthcare providers realise their potential, and engineers and scientists are discovering that medicine and healthcare are very fertile areas for developing new, or applying existing, intelligent algorithms to real problems. Intelligent systems make it possible to capture expert medical knowledge and to discover new knowledge so as to improve in-patient monitoring, data analysis and decision making, and hence the quality of healthcare.This book contains features which include: neural networks and expert systems techniques, as well as medical neural networks and expert systems. It should be of interest to managers, academics, engineers, scientists and medical practitioners involved in the funding, development and use of intelligent medical systems.




Artificial Intelligence in Medicine


Book Description

In the ever-evolving realm of healthcare, Artificial Intelligence in Medicine emerges as a trailblazing guide, offering an extensive exploration of the transformative power of Artificial Intelligence (AI). Crafted by leading experts in the field, this book sets out to bridge the gap between theoretical understanding and practical application, presenting a comprehensive journey through the foundational principles, cutting-edge applications, and the potential impact of AI in the medical landscape. This book embarks on a journey from foundational principles to advanced applications, presenting a holistic perspective on the integration of AI into diverse aspects of medicine. With a clear aim to cater to both researchers and practitioners, the scope extends from fundamental AI techniques to their innovative applications in disease detection, prediction, and patient care. Distinguished by its practical orientation, each chapter presents actionable workflows, making theoretical concepts directly applicable to real-world medical scenarios. This unique approach sets the book apart, making it an invaluable resource for learners and practitioners alike. Key Features: • Comprehensive Exploration: From deep learning approaches for cardiac arrhythmia to advanced algorithms for ocular disease detection, the book provides an in-depth exploration of critical topics, ensuring a thorough understanding of AI in medicine. • Cutting-Edge Applications: The book delves into cutting-edge applications, including a vision transformer-based approach for brain tumor detection, early diagnosis of skin cancer, and a deep learning-based model for early detection of COVID-19 using chest X-ray images. • Practical Insights: Practical workflows and demonstrations guide readers through the application of AI techniques in real-world medical scenarios, offering insights that transcend theoretical boundaries. This book caters to researchers, practitioners, and students in medicine, computer science, and healthcare technology. With a focus on practical applications, this book is an essential guide for navigating the dynamic intersection of AI and medicine. Whether you are an expert or a newcomer to the field, this comprehensive volume provides a roadmap to the revolutionary impact of AI on the future of healthcare.







Advances in Computational Intelligence Techniques


Book Description

This book highlights recent advances in computational intelligence for signal processing, computing, imaging, artificial intelligence, and their applications. It offers support for researchers involved in designing decision support systems to promote the societal acceptance of ambient intelligence, and presents the latest research on diverse topics in intelligence technologies with the goal of advancing knowledge and applications in this rapidly evolving field. As such, it offers a valuable resource for researchers, developers and educators whose work involves recent advances and emerging technologies in computational intelligence.




EMBC 2004


Book Description










Machine Learning for Healthcare Applications


Book Description

When considering the idea of using machine learning in healthcare, it is a Herculean task to present the entire gamut of information in the field of intelligent systems. It is, therefore the objective of this book to keep the presentation narrow and intensive. This approach is distinct from others in that it presents detailed computer simulations for all models presented with explanations of the program code. It includes unique and distinctive chapters on disease diagnosis, telemedicine, medical imaging, smart health monitoring, social media healthcare, and machine learning for COVID-19. These chapters help develop a clear understanding of the working of an algorithm while strengthening logical thinking. In this environment, answering a single question may require accessing several data sources and calling on sophisticated analysis tools. While data integration is a dynamic research area in the database community, the specific needs of research have led to the development of numerous middleware systems that provide seamless data access in a result-driven environment. Since this book is intended to be useful to a wide audience, students, researchers and scientists from both academia and industry may all benefit from this material. It contains a comprehensive description of issues for healthcare data management and an overview of existing systems, making it appropriate for introductory and instructional purposes. Prerequisites are minimal; the readers are expected to have basic knowledge of machine learning. This book is divided into 22 real-time innovative chapters which provide a variety of application examples in different domains. These chapters illustrate why traditional approaches often fail to meet customers’ needs. The presented approaches provide a comprehensive overview of current technology. Each of these chapters, which are written by the main inventors of the presented systems, specifies requirements and provides a description of both the chosen approach and its implementation. Because of the self-contained nature of these chapters, they may be read in any order. Each of the chapters use various technical terms which involve expertise in machine learning and computer science.




Handbook of Security and Privacy of AI-Enabled Healthcare Systems and Internet of Medical Things


Book Description

The fast-growing number of patients suffering from various ailments has overstretched the carrying capacity of traditional healthcare systems. This handbook addresses the increased need to tackle security issues and preserve patients’ privacy concerns in Artificial Intelligence of Medical Things (AIoMT) devices and systems. Handbook of Security and Privacy of AI-Enabled Healthcare Systems and the Internet of Medical Things provides new insights into the deployment, application, management, and benefits of AIoMT by examining real-world scenarios. The handbook takes a critical look at existing security designs and offers solutions to revamp traditional security architecture, including the new design of effi cient intrusion detection algorithms, attack prevention techniques, and both cryptographic and noncryptographic solutions. The handbook goes on to discuss the critical security and privacy issues that affect all parties in the healthcare ecosystem and provides practical AI-based solutions. This handbook offers new and valuable information that will be highly beneficial to educators, researchers, and others. .




Artificial Intelligence, Blockchain, Computing and Security Volume 2


Book Description

This book contains the conference proceedings of ICABCS 2023, a non-profit conference with the objective to provide a platform that allows academicians, researchers, scholars and students from various institutions, universities and industries in India and abroad to exchange their research and innovative ideas in the field of Artificial Intelligence, Blockchain, Computing and Security. It explores the recent advancement in field of Artificial Intelligence, Blockchain, Communication and Security in this digital era for novice to profound knowledge about cutting edges in artificial intelligence, financial, secure transaction, monitoring, real time assistance and security for advanced stage learners/ researchers/ academicians. The key features of this book are: Broad knowledge and research trends in artificial intelligence and blockchain with security and their role in smart living assistance Depiction of system model and architecture for clear picture of AI in real life Discussion on the role of Artificial Intelligence and Blockchain in various real-life problems across sectors including banking, healthcare, navigation, communication, security Explanation of the challenges and opportunities in AI and Blockchain based healthcare, education, banking, and related industries This book will be of great interest to researchers, academicians, undergraduate students, postgraduate students, research scholars, industry professionals, technologists, and entrepreneurs.