American Society for Composites


Book Description







Experimental and Applied Mechanics, Volume 4


Book Description

Experimental and Applied Mechanics, Volume 4: Proceedings of the 2012 Annual Conference on Experimental and Applied Mechanics, the fourth volume of seven from the Conference, brings together 54 contributions to this important area of research and engineering. The collection presents early findings and case studies on fundamental and applied aspects of Experimental and Applied Mechanics, including papers on: Fracture & Fatigue Microscale & Microstructural Effects in Fatigue & Fracture Material Applications Composite Characterization Using Digital Image Correlation Techniques Multi-Scale Simulation and Testing of Composites Residual Stress Inverse Problems/Hybrid Methods Nano-Composites Microstructure Material Characterization Modeling and Uncertainty Quantification Impact Behavior of Composites




Ultrasonics


Book Description

Updated, revised, and restructured to reflect the latest advances in science and applications, the fourth edition of this best-selling industry and research reference covers the fundamental physical acoustics of ultrasonics and transducers, with a focus on piezoelectric and magnetostrictive modalities. It then discusses the full breadth of ultrasonics applications involving low power (sensing) and high power (processing) for research, industrial, and medical use. This book includes new content covering computer modeling used for acoustic and elastic wave phenomena, including scattering, mode conversion, transmission through layered media, Rayleigh and Lamb waves and flexural plates, modern horn design tools, Langevin transducers, and material characterization. There is more attention on process monitoring and advanced nondestructive testing and evaluation (NDT/NDE), including phased array ultrasound (PAUT), long-range inspection, using guided ultrasonic waves (GUW), internally rotary inspection systems (IRIS), time-of-flight diffraction (TOFD), and acoustic emission (AE). These methods are discussed and applied to both metals and nonmetals using illustrations in various industries, including now additionally for food and beverage products. The topics of defect sizing, capabilities, and limitations, including the probability of detection (POD), are introduced. Three chapters provide a new treatment of high-power ultrasonics, for both fluids and solids, and again, with examples of industrial engineering, food and beverage, pharmaceuticals, petrochemicals, and other process applications. Expanded coverage is given to medical and biological applications, covering diagnostics, therapy, and, at the highest powers, surgery. Key Features Provides an overview of fundamental analysis and transducer technologies needed to design and develop both measurement and processing systems Considers applications in material characterization and metrology Covers ultrasonic nondestructive testing and evaluation and high-power ultrasonics, which involves interactions that change the state of material Highlights medical and biomedical applications of ultrasound, focusing on the physical acoustics and the technology employed for diagnosis, therapy, surgery, and research This book is intended for both the undergraduate and graduate scientists and engineers, as well as the working professional, who seeks to understand the fundamentals together with a holistic treatment of the field of ultrasonics and its diversity of applications.




Materials for Nuclear Plants


Book Description

The clamor for non-carbon dioxide emitting energy production has directly impacted on the development of nuclear energy. As new nuclear plants are built, plans and designs are continually being developed to manage the range of challenging requirement and problems that nuclear plants face especially when managing the greatly increased operating temperatures, irradiation doses and extended design life spans. Materials for Nuclear Plants: From Safe Design to Residual Life Assessments provides a comprehensive treatment of the structural materials for nuclear power plants with emphasis on advanced design concepts. Materials for Nuclear Plants: From Safe Design to Residual Life Assessments approaches structural materials with a systemic approach. Important components and materials currently in use as well as those which can be considered in future designs are detailed, whilst the damage mechanisms responsible for plant ageing are discussed and explained. Methodologies for materials characterization, materials modeling and advanced materials testing will be described including design code considerations and non-destructive evaluation concepts. Including models for simple system dynamic problems and knowledge of current nuclear power plants in operation, Materials for Nuclear Plants: From Safe Design to Residual Life Assessments is ideal for students studying postgraduate courses in Nuclear Engineering. Designers on courses for code development, such as ASME or ISO and nuclear authorities will also find this a useful reference.







Optical Sensors for Structural Health Monitoring


Book Description

The evolution and need for the preservation and maintenance of existing structures, recent or historical, has fostered research in the area of structural monitoring, translated into the development of new techniques, equipment and sensors. Early detection of damage and accurate assessment of structural safety requires monitoring systems, the data from which can be used to calibrate numerical models for structural analysis and to assess safety. Data are obtained under real-time conditions, considering a group of parameters related to structural properties, such as stresses, accelerations, deformations and displacements. The analysis of structural properties is particularly relevant when the structure is subjected to extreme events (earthquakes, wind, fire and explosions, among others) or repeated loads (road/rail/air traffic, vibrations induced by equipment and machines), since they affect the structural integrity and put the users at risk. In order to prevent the severe damage and eventual collapse of structures, and consequent human, material and economic losses, the implementation of monitoring systems becomes a valuable tool for today's society. Monitoring of structures is becoming increasingly important, not only as preventive action, but also due to actual economic and sustainability concerns, to ensure a safer and more comfortable built environment.