Statistical Methods in Water Resources


Book Description

Data on water quality and other environmental issues are being collected at an ever-increasing rate. In the past, however, the techniques used by scientists to interpret this data have not progressed as quickly. This is a book of modern statistical methods for analysis of practical problems in water quality and water resources.The last fifteen years have seen major advances in the fields of exploratory data analysis (EDA) and robust statistical methods. The 'real-life' characteristics of environmental data tend to drive analysis towards the use of these methods. These advances are presented in a practical and relevant format. Alternate methods are compared, highlighting the strengths and weaknesses of each as applied to environmental data. Techniques for trend analysis and dealing with water below the detection limit are topics covered, which are of great interest to consultants in water-quality and hydrology, scientists in state, provincial and federal water resources, and geological survey agencies.The practising water resources scientist will find the worked examples using actual field data from case studies of environmental problems, of real value. Exercises at the end of each chapter enable the mechanics of the methodological process to be fully understood, with data sets included on diskette for easy use. The result is a book that is both up-to-date and immediately relevant to ongoing work in the environmental and water sciences.







New Perspectives on Virtual and Augmented Reality


Book Description

New Perspectives on Virtual and Augmented Reality discusses the possibilities of using virtual and augmented reality in the role of innovative pedagogy, where there is an urgent need to find ways to teach and support learning in a transformed learning environment. Technology creates opportunities to learn differently and presents challenges for education. Virtual reality solutions can be exciting, create interest in learning, make learning more accessible and make learning faster. This book analyses the capabilities of virtual, augmented and mixed reality by providing ideas on how to make learning more effective, how existing VR/AR solutions can be used as learning tools and how a learning process can be structured. The virtual reality (VR) solutions can be used successfully for educational purposes as their use can contribute to the construction of knowledge and the development of metacognitive processes. They also contribute to inclusive education by providing access to knowledge that would not otherwise be available. This book will be of great interest to academics, researchers and post-graduate students in the field of educational technology.




Social Sensing and Big Data Computing for Disaster Management


Book Description

Social Sensing and Big Data Computing for Disaster Management captures recent advancements in leveraging social sensing and big data computing for supporting disaster management. Specifically, analysed within this book are some of the promises and pitfalls of social sensing data for disaster relevant information extraction, impact area assessment, population mapping, occurrence patterns, geographical disparities in social media use, and inclusion in larger decision support systems. Traditional data collection methods such as remote sensing and field surveying often fail to offer timely information during or immediately following disaster events. Social sensing enables all citizens to become part of a large sensor network which is low cost, more comprehensive, and always broadcasting situational awareness information. However, data collected with social sensing is often massive, heterogeneous, noisy, and unreliable in some aspects. It comes in continuous streams, and often lacks geospatial reference information. Together, these issues represent a grand challenge toward fully leveraging social sensing for emergency management decision making under extreme duress. Meanwhile, big data computing methods and technologies such as high-performance computing, deep learning, and multi-source data fusion become critical components of using social sensing to understand the impact of and response to the disaster events in a timely fashion. This book was originally published as a special issue of the International Journal of Digital Earth.