Proceedings of the 8th International Conference on Foundations of Computer-Aided Process Design


Book Description

This volume collects together the presentations at the Eighth International Conference on Foundations of Computer-Aided Process Design, FOCAPD-2014, an event that brings together researchers, educators, and practitioners to identify new challenges and opportunities for process and product design. The chemical industry is currently entering a new phase of rapid evolution. The availability of low-cost feedstocks from natural gas is causing renewed investment in basic chemicals in the OECD, while societal pressures for sustainability and energy security continue to be key drivers in technology development and product selection. This dynamic environment creates opportunities to launch new products and processes and to demonstrate new methodologies for innovation, synthesis and design. FOCAPD-2014 fosters constructive interaction among thought leaders from academia, industry, and government and provides a showcase for the latest research in product and process design. - Focuses exclusively on the fundamentals and applications of computer-aided design for the process industries. - Provides a fully archival and indexed record of the FOCAPD14 conference - Aligns the FOCAPD series with the ESCAPE and PSE series







FOCAPD-19/Proceedings of the 9th International Conference on Foundations of Computer-Aided Process Design, July 14 - 18, 2019


Book Description

FOCAPD-19/Proceedings of the 9th International Conference on Foundations of Computer-Aided Process Design, July 14 - 18, 2019, compiles the presentations given at the Ninth International Conference on Foundations of Computer-Aided Process Design, FOCAPD-2019. It highlights the meetings held at this event that brings together researchers, educators and practitioners to identify new challenges and opportunities for process and product design. - Combines presentations from the Ninth International Conference on Foundations of Computer-Aided Process Design, FOCAPD-2019




Optimal Automated Process Fault Analysis


Book Description

Tested and proven strategy to develop optimal automated process fault analyzers Process fault analyzers monitor process operations in order to identify the underlying causes of operational problems. Several diagnostic strategies exist for automating process fault analysis; however, automated fault analysis is still not widely used within the processing industries due to problems of cost and performance as well as the difficulty of modeling process behavior at needed levels of detail. In response, this book presents the method of minimal evidence (MOME), a model-based diagnostic strategy that facilitates the development and implementation of optimal automated process fault analyzers. MOME was created at the University of Delaware by the researchers who developed the FALCON system, a real-time, online process fault analyzer. The authors demonstrate how MOME is used to diagnose single and multiple fault situations, determine the strategic placement of process sensors, and distribute fault analyzers within large processing systems. Optimal Automated Process Fault Analysis begins by exploring the need to automate process fault analysis. Next, the book examines: Logic of model-based reasoning as used in MOME MOME logic for performing single and multiple fault diagnoses Fuzzy logic algorithms for automating MOME Distributing process fault analyzers throughout large processing systems Virtual SPC analysis and its use in FALCONEERTM IV Process state transition logic and its use in FALCONEERTM IV The book concludes with a summary of the lessons learned by employing FALCONEERTM IV in actual process applications, including the benefits of "intelligent supervision" of process operations. With this book as their guide, readers have a powerful new tool for ensuring the safety and reliability of any chemical processing system.




Supercomputer Algorithms for Reactivity, Dynamics and Kinetics of Small Molecules


Book Description

The need for accurate computational procedures to evaluate detailed properties of gas phase chemical reactions is evident when one considers the wealth of information provided by laser, molecular beam and fast How experiments. By stressing ordinary scalar computers to their limiting performance quantum chemistry codes can already provide sufficiently accurate estimates of the stability of several small molecules and of the reactivity of a few elementary processes. However, the accurate characterization of a reactive process, even for small systems, is so demanding in terms of computer resources to make the use of supercomputers having vector and parallel features unavoidable. Sometimes to take full advantage from these features all is needed is a restructure of those parts of the computer code which perform vector and matrix manipulations and a parallel execution of its independent tasks. More often, a deeper restructure has to be carried out. This may involve the problem of choosing a suitable computational strategy or the more radical alternative of changing the theoretical treatment. There are cases, in fact, where theoretical approaches found to be inefficient on a scalar computer exhibit their full computational strength on a supercomputer.




21st European Symposium on Computer Aided Process Engineering


Book Description

The European Symposium on Computer Aided Process Engineering (ESCAPE) series presents the latest innovations and achievements of leading professionals from the industrial and academic communities. The ESCAPE series serves as a forum for engineers, scientists, researchers, managers and students to present and discuss progress being made in the area of computer aided process engineering (CAPE). European industries large and small are bringing innovations into our lives, whether in the form of new technologies to address environmental problems, new products to make our homes more comfortable and energy efficient or new therapies to improve the health and well being of European citizens. Moreover, the European Industry needs to undertake research and technological initiatives in response to humanity's "Grand Challenges," described in the declaration of Lund, namely, Global Warming, Tightening Supplies of Energy, Water and Food, Ageing Societies, Public Health, Pandemics and Security. Thus, the Technical Theme of ESCAPE 21 will be "Process Systems Approaches for Addressing Grand Challenges in Energy, Environment, Health, Bioprocessing & Nanotechnologies."




Planning and Integration of Refinery and Petrochemical Operations


Book Description

Clearly divided into three main sections, this practical book familiarizes readers with the area of planning in petroleum refining and petrochemical industry, while introducing several planning and modeling strategies encompassing single site refinery plants, multiple refinery networks, petrochemical networks, and refinery and petrochemical planning systems. It equally provides an insight into possible research directions and recommendations for the area of refinery and petrochemical planning. Furthermore, several appendices are included to explain the general background necessary, including stochastic programming, chance constraint programming, and robust optimization. For engineers and managers working in the petroleum industry as well as academic researchers in production, logistics, and supply chain management.




30th European Symposium on Computer Aided Chemical Engineering


Book Description

30th European Symposium on Computer Aided Chemical Engineering, Volume 47 contains the papers presented at the 30th European Symposium of Computer Aided Process Engineering (ESCAPE) event held in Milan, Italy, May 24-27, 2020. It is a valuable resource for chemical engineers, chemical process engineers, researchers in industry and academia, students, and consultants for chemical industries. - Presents findings and discussions from the 30th European Symposium of Computer Aided Process Engineering (ESCAPE) event - Offers a valuable resource for chemical engineers, chemical process engineers, researchers in industry and academia, students, and consultants for chemical industries