Proceedings of the Second International Conference on Press-in Engineering 2021, Kochi, Japan


Book Description

The Second International Conference on Press-in Engineering (ICPE) 2021 was organized by the International Press-in Association (IPA). The conference is held every three years and the main theme this time is "Evolution and Social Contribution of Press-in Engineering for Infrastructure Development, and Disaster Prevention and Mitigation". These proceedings contain 2 keynote lectures, 3 state-of-the-art lectures and about 60 papers from more than 10 countries. This publication provides good practice guidance on the application of the press-in piling method, to satisfy the requirements of geo-structures which are embedded utilizing prefabricated piles. It covers actual examples of the press-in piling method applied to various geo-structures, such as temporary and permanent retaining walls, cofferdams, cut-off walls, foundation piles etc. The content addresses the technical and construction issues relating to the selection of the appropriate type of press-in piling method, in accordance with required structural design criteria and soil and working conditions. The aim of this publication is to concisely describe practical uses of the press-in piling method for project owners, designers, contractors, academic researchers and other people in the construction industry.




5th International Conference on New Developments in Soil Mechanics and Geotechnical Engineering


Book Description

This volume highlights the latest advances and innovations in the field of soil mechanics and geotechnical engineering, as presented by leading international researchers and engineers at the 5th International Conference on New Developments in Soil Mechanics and Geotechnical Engineering (ZM), held in Nicosia, Northern Cyprus on June 30-July 2, 2022. It covers a diverse range of topics such as soil properties and characterization; shallow and deep foundations; soil improvement; excavations, support systems, earth-retaining structures and underground systems; earthquake geotechnical engineering; stability of slopes and landslides; fills and embankments; environmental preservation, water and energy; modelling and analyses in geotechnical engineering. The contributions, which were selected by means of a rigorous international peer-review process, present a wealth of exciting ideas that will open novel research directions and foster multidisciplinary collaboration among different specialists.




Developments in Geotechnical Engineering: from Harvard to New Delhi 1936-1994


Book Description

This book reviews the developments that have taken place in the field of geotechnical engineering since the first international conference on Soil Mechanics and Foundation Engineering was held in Harvard University in 1936 until the January 1994 conference in New Delhi, India.




Correlations of Soil and Rock Properties in Geotechnical Engineering


Book Description

This book presents a one-stop reference to the empirical correlations used extensively in geotechnical engineering. Empirical correlations play a key role in geotechnical engineering designs and analysis. Laboratory and in situ testing of soils can add significant cost to a civil engineering project. By using appropriate empirical correlations, it is possible to derive many design parameters, thus limiting our reliance on these soil tests. The authors have decades of experience in geotechnical engineering, as professional engineers or researchers. The objective of this book is to present a critical evaluation of a wide range of empirical correlations reported in the literature, along with typical values of soil parameters, in the light of their experience and knowledge. This book will be a one-stop-shop for the practising professionals, geotechnical researchers and academics looking for specific correlations for estimating certain geotechnical parameters. The empirical correlations in the forms of equations and charts and typical values are collated from extensive literature review, and from the authors' database.




Geotechnical Earthquake Engineering


Book Description

This fully updated second edition provides an introduction to geotechnical earthquake engineering for first-year graduate students in geotechnical or earthquake engineering graduate programs with a level of detail that will also be useful for more advanced students as well as researchers and practitioners. It begins with an introduction to seismology and earthquake ground motions, then presents seismic hazard analysis and performance-based earthquake engineering (PBEE) principles. Dynamic soil properties pertinent to earthquake engineering applications are examined, both to facilitate understanding of soil response to seismic loads and to describe their practical measurement as part of site characterization. These topics are followed by site response and its analysis and soil–structure interaction. Ground failure in the form of soil liquefaction, cyclic softening, surface fault rupture, and seismically induced landslides are also addressed, and the book closes with a chapter on soil improvement and hazard mitigation. The first edition has been widely used around the world by geotechnical engineers as well as many seismologists and structural engineers. The main text of this book and the four appendices: • Cover fundamental concepts in applied seismology, geotechnical engineering, and structural dynamics. • Contain numerous references for further reading, allowing for detailed exploration of background or more advanced material. • Present worked example problems that illustrate the application of key concepts emphasized in the text. • Include chapter summaries that emphasize the most important points. • Present concepts of performance-based earthquake engineering with an emphasis on uncertainty and the types of probabilistic analyses needed to implement PBEE in practice. • Present a broad, interdisciplinary narrative, drawing from the fields of seismology, geotechnical engineering, and structural engineering to facilitate holistic understanding of how geotechnical earthquake engineering is applied in seismic hazard and risk analyses and in seismic design.




Earthquake Geotechnical Engineering for Protection and Development of Environment and Constructions


Book Description

Earthquake Geotechnical Engineering for Protection and Development of Environment and Constructions contains invited, keynote and theme lectures and regular papers presented at the 7th International Conference on Earthquake Geotechnical Engineering (Rome, Italy, 17-20 June 2019. The contributions deal with recent developments and advancements as well as case histories, field monitoring, experimental characterization, physical and analytical modelling, and applications related to the variety of environmental phenomena induced by earthquakes in soils and their effects on engineered systems interacting with them. The book is divided in the sections below: Invited papers Keynote papers Theme lectures Special Session on Large Scale Testing Special Session on Liquefact Projects Special Session on Lessons learned from recent earthquakes Special Session on the Central Italy earthquake Regular papers Earthquake Geotechnical Engineering for Protection and Development of Environment and Constructions provides a significant up-to-date collection of recent experiences and developments, and aims at engineers, geologists and seismologists, consultants, public and private contractors, local national and international authorities, and to all those involved in research and practice related to Earthquake Geotechnical Engineering.




ICE Manual of Geotechnical Engineering Volume 2


Book Description

ICE Manual of Geotechnical Engineering, Second edition brings together an exceptional breadth of material to provide a definitive reference on geotechnical engineering solutions. Written and edited by leading specialists, each chapter provides contemporary guidance and best practice knowledge for civil and structural engineers in the field.




Analytical Methods in Petroleum Upstream Applications


Book Description

Effective measurement of the composition and properties of petroleum is essential for its exploration, production, and refining; however, new technologies and methodologies are not adequately documented in much of the current literature. Analytical Methods in Petroleum Upstream Applications explores advances in the analytical methods and instrumentation that allow more accurate determination of the components, classes of compounds, properties, and features of petroleum and its fractions. Recognized experts explore a host of topics, including: A petroleum molecular composition continuity model as a context for other analytical measurements A modern modular sampling system for use in the lab or the process area to collect and control samples for subsequent analysis The importance of oil-in-water measurements and monitoring The chemical and physical properties of heavy oils, their fractions, and products from their upgrading Analytical measurements using gas chromatography and nuclear magnetic resonance (NMR) applications Asphaltene and heavy ends analysis Chemometrics and modeling approaches for understanding petroleum composition and properties to improve upstream, midstream, and downstream operations Due to the renaissance of gas and oil production in North America, interest has grown in analytical methods for a wide range of applications. The understanding provided in this text is designed to help chemists, geologists, and chemical and petroleum engineers make more accurate estimates of the crude value to specific refinery configurations, providing insight into optimum development and extraction schemes.




Unsaturated Soil Mechanics in Engineering Practice


Book Description

The definitive guide to unsaturated soil— from the world's experts on the subject This book builds upon and substantially updates Fredlund and Rahardjo's publication, Soil Mechanics for Unsaturated Soils, the current standard in the field of unsaturated soils. It provides readers with more thorough coverage of the state of the art of unsaturated soil behavior and better reflects the manner in which practical unsaturated soil engineering problems are solved. Retaining the fundamental physics of unsaturated soil behavior presented in the earlier book, this new publication places greater emphasis on the importance of the "soil-water characteristic curve" in solving practical engineering problems, as well as the quantification of thermal and moisture boundary conditions based on the use of weather data. Topics covered include: Theory to Practice of Unsaturated Soil Mechanics Nature and Phase Properties of Unsaturated Soil State Variables for Unsaturated Soils Measurement and Estimation of State Variables Soil-Water Characteristic Curves for Unsaturated Soils Ground Surface Moisture Flux Boundary Conditions Theory of Water Flow through Unsaturated Soils Solving Saturated/Unsaturated Water Flow Problems Air Flow through Unsaturated Soils Heat Flow Analysis for Unsaturated Soils Shear Strength of Unsaturated Soils Shear Strength Applications in Plastic and Limit Equilibrium Stress-Deformation Analysis for Unsaturated Soils Solving Stress-Deformation Problems with Unsaturated Soils Compressibility and Pore Pressure Parameters Consolidation and Swelling Processes in Unsaturated Soils Unsaturated Soil Mechanics in Engineering Practice is essential reading for geotechnical engineers, civil engineers, and undergraduate- and graduate-level civil engineering students with a focus on soil mechanics.




Engineering Geology and Construction


Book Description

Winner of the 2004 Claire P. Holdredge Award of the Association of Engineering Geologists (USA). The only book to concentrate on the relationship between geology and its implications for construction, this book covers the full scope of the subject from site investigation through to the complexities of reservoirs and dam sites. Features include international case studies throughout, and summaries of accepted practice, plus sections on waste disposal, and contaminated land.