Conductor: Distributed Adaptation for Heterogeneous Networks


Book Description

Internet heterogeneity is driving a new challenge in application development: adaptive software. Together with the increased Internet capacity and new access technologies, network congestion and the use of older technologies, wireless access, and peer-to-peer networking are increasing the heterogeneity of the Internet. Applications should provide gracefully degraded levels of service when network conditions are poor, and enhanced services when network conditions exceed expectations. Existing adaptive technologies, which are primarily end-to-end or proxy-based and often focus on a single deficient link, can perform poorly in heterogeneous networks. Instead, heterogeneous networks frequently require multiple, coordinated, and distributed remedial actions. Conductor: Distributed Adaptation for Heterogeneous Networks describes a new approach to graceful degradation in the face of network heterogeneity - distributed adaptation - in which adaptive code is deployed at multiple points within a network. The feasibility of this approach is demonstrated by conductor, a middleware framework that enables distributed adaptation of connection-oriented, application-level protocols. By adapting protocols, conductor provides application-transparent adaptation, supporting both existing applications and applications designed with adaptation in mind. Conductor: Distributed Adaptation for Heterogeneous Networks introduces new techniques that enable distributed adaptation, making it automatic, reliable, and secure. In particular, we introduce the notion of semantic segmentation, which maintains exactly-once delivery of the semantic elements of a data stream while allowing the stream to be arbitrarily adapted in transit. We also introduce a secure architecture for automatic adaptor selection, protecting user data from unauthorized adaptation. These techniques are described both in the context of conductor and in the broader context of distributed systems. Finally, this book presents empirical evidence from several case studies indicating that distributed adaptation can allow applications to degrade gracefully in heterogeneous networks, providing a higher quality of service to users than other adaptive techniques. Further, experimental results indicate that the proposed techniques can be employed without excessive cost. Thus, distributed adaptation is both practical and beneficial. Conductor: Distributed Adaptation for Heterogeneous Networks is designed to meet the needs of a professional audience composed of researchers and practitioners in industry and graduate-level students in computer science.







Computational Science - ICCS 2003. Part 4.


Book Description

The four-volume set LNCS 2657, LNCS 2658, LNCS 2659, and LNCS 2660 constitutes the refereed proceedings of the Third International Conference on Computational Science, ICCS 2003, held concurrently in Melbourne, Australia and in St. Petersburg, Russia in June 2003. The four volumes present more than 460 reviewed contributed and invited papers and span the whole range of computational science, from foundational issues in computer science and algorithmic mathematics to advanced applications in virtually all application fields making use of computational techniques. These proceedings give a unique account of recent results in the field.




Proceedings of the Third International Network Conference (INC2002)


Book Description

This book contains the proceedings of the Third International Network Conference (INC 2002), which was held in Plymouth, UK, in July 2002. A total of 72 papers were accepted for inclusion in the conference, and they are presented here in 8 themed chapters. The main topics of the book include: Web Technologies and Applications; Network Technologies; Multimedia over IP; Quality of Service; Security and Privacy; Distributed Technologies; Mobility; and Applications and Impacts. The papers address state-of-the-art research and applications of network technology, arising from both the academic and industrial domains. The book should consequently be of interest to network practitioners, researchers, academics, and technical managers involved in the design, development and use of network systems.




Dependable Embedded Systems


Book Description

This Open Access book introduces readers to many new techniques for enhancing and optimizing reliability in embedded systems, which have emerged particularly within the last five years. This book introduces the most prominent reliability concerns from today’s points of view and roughly recapitulates the progress in the community so far. Unlike other books that focus on a single abstraction level such circuit level or system level alone, the focus of this book is to deal with the different reliability challenges across different levels starting from the physical level all the way to the system level (cross-layer approaches). The book aims at demonstrating how new hardware/software co-design solution can be proposed to ef-fectively mitigate reliability degradation such as transistor aging, processor variation, temperature effects, soft errors, etc. Provides readers with latest insights into novel, cross-layer methods and models with respect to dependability of embedded systems; Describes cross-layer approaches that can leverage reliability through techniques that are pro-actively designed with respect to techniques at other layers; Explains run-time adaptation and concepts/means of self-organization, in order to achieve error resiliency in complex, future many core systems.




Invasive Tightly Coupled Processor Arrays


Book Description

This book introduces new massively parallel computer (MPSoC) architectures called invasive tightly coupled processor arrays. It proposes strategies, architecture designs, and programming interfaces for invasive TCPAs that allow invading and subsequently executing loop programs with strict requirements or guarantees of non-functional execution qualities such as performance, power consumption, and reliability. For the first time, such a configurable processor array architecture consisting of locally interconnected VLIW processing elements can be claimed by programs, either in full or in part, using the principle of invasive computing. Invasive TCPAs provide unprecedented energy efficiency for the parallel execution of nested loop programs by avoiding any global memory access such as GPUs and may even support loops with complex dependencies such as loop-carried dependencies that are not amenable to parallel execution on GPUs. For this purpose, the book proposes different invasion strategies for claiming a desired number of processing elements (PEs) or region within a TCPA exclusively for an application according to performance requirements. It not only presents models for implementing invasion strategies in hardware, but also proposes two distinct design flavors for dedicated hardware components to support invasion control on TCPAs.




Gecon 2006 - Proceedings Of The 3rd International Workshop On Grid Economics And Business Models


Book Description

Grid computing systems utilize the heterogeneous networked resources, such as computation, information, database, storage, bandwidth, etc., through the Internet. The systems can operate in predefined and organized ways or form the collected resource systems through self-organizing and decentralized ways. Even with the various types of abundant resources in the Internet, the resources that can be organized and operated in the presence of multiple resource owners with the uncertainty of resource availability and quality are scarce.This volume contains refereed and invited papers presented at the 3rd International Workshop on Grid Economics and Business Models held on 16 May 2006 at the Singapore Management University, in conjunction with GridAsia 2006. It includes contributions by researchers and practitioners from multiple disciplines that discuss the economy of the systems concerned, with focus on the operational and deployment issues of Grid Economy.




Integrated Network Management VIII


Book Description

Welcome to 1M 2003, the eighth in a series of the premier international technical conference in this field. As IT management has become mission critical to the economies of the developed world, our technical program has grown in relevance, strength and quality. Over the next few years, leading IT organizations will gradually move from identifying infrastructure problems to providing business services via automated, intelligent management systems. To be successful, these future management systems must provide global scalability, for instance, to support Grid computing and large numbers of pervasive devices. In Grid environments, organizations can pool desktops and servers, dynamically creating a virtual environment with huge processing power, and new management challenges. As the number, type, and criticality of devices connected to the Internet grows, new innovative solutions are required to address this unprecedented scale and management complexity. The growing penetration of technologies, such as WLANs, introduces new management challenges, particularly for performance and security. Management systems must also support the management of business processes and their supporting technology infrastructure as integrated entities. They will need to significantly reduce the amount of adventitious, bootless data thrown at consoles, delivering instead a cogent view of the system state, while leaving the handling of lower level events to self-managed, multifarious systems and devices. There is a new emphasis on "autonomic" computing, building systems that can perform routine tasks without administrator intervention and take prescient actions to rapidly recover from potential software or hardware failures.