Methods of Foundation Engineering


Book Description

Methods of Foundation Engineering covers the theory, analysis, and practice of foundation engineering, as well as its soil mechanics and structural design aspects and principles. The book is divided into five parts encompassing 21 chapters. Part A is of an introductory character and presents a brief review of the various types of foundation structures used in civil engineering and their historical development. Part B provides the theoretical fundamentals of soil and rock mechanics, which are of importance for foundation design. Part C deals with the design of the footing area of spread footings and discusses the shallow foundation methods. Part D describes the methods of deep foundations, while Part E is devoted to special foundation methods. Each chapter in Parts C to E starts with an introduction containing a synopsis of the matter being discussed and giving suggestions as to the choice of a suitable method of foundation. This is followed by a description of the methods generally used in practice. Simple analyses of structures, presented at the conclusion of each chapter, can be carried out by a pocket calculator. This book will prove useful to practicing civil and design engineers.




Engineering Geology and Construction


Book Description

Winner of the 2004 Claire P. Holdredge Award of the Association of Engineering Geologists (USA). The only book to concentrate on the relationship between geology and its implications for construction, this book covers the full scope of the subject from site investigation through to the complexities of reservoirs and dam sites. Features include international case studies throughout, and summaries of accepted practice, plus sections on waste disposal, and contaminated land.










Guidelines for Open Pit Slope Design in Weak Rocks


Book Description

Weak rocks encountered in open pit mines cover a wide variety of materials, with properties ranging between soil and rock. As such, they can provide a significant challenge for the slope designer. For these materials, the mass strength can be the primary control in the design of the pit slopes, although structures can also play an important role. Because of the typically weak nature of the materials, groundwater and surface water can also have a controlling influence on stability. Guidelines for Open Pit Slope Design in Weak Rocks is a companion to Guidelines for Open Pit Slope Design, which was published in 2009 and dealt primarily with strong rocks. Both books were commissioned under the Large Open Pit (LOP) project, which is sponsored by major mining companies. These books provide summaries of the current state of practice for the design, implementation and assessment of slopes in open pits, with a view to meeting the requirements of safety, as well as the recovery of anticipated ore reserves. This book, which follows the general cycle of the slope design process for open pits, contains 12 chapters. These chapters were compiled and written by industry experts and contain a large number of case histories. The initial chapters address field data collection, the critical aspects of determining the strength of weak rocks, the role of groundwater in weak rock slope stability and slope design considerations, which can differ somewhat from those applied to strong rock. The subsequent chapters address the principal weak rock types that are encountered in open pit mines, including cemented colluvial sediments, weak sedimentary mudstone rocks, soft coals and chalk, weak limestone, saprolite, soft iron ores and other leached rocks, and hydrothermally altered rocks. A final chapter deals with design implementation aspects, including mine planning, monitoring, surface water control and closure of weak rock slopes. As with the other books in this series, Guidelines for Open Pit Slope Design in Weak Rocks provides guidance to practitioners involved in the design and implementation of open pit slopes, particularly geotechnical engineers, mining engineers, geologists and other personnel working at operating mines.







Foundation Engineering


Book Description

Residual soils are found in many parts of the world. Like other soils, they are used extensively in construction, being built upon and used as construction materials. Residual soils are formed when the processes of rock weathering proceed at a faster rate than the transport processes by water, gravity and wind, whereby much of the resulting soils will remain in place. The soil typically retains many of the characteristics of the parent rock. In a tropical region, residual soil layers can be very thick, sometimes extending for hundred of meters before reaching unweathered rock. This book has gathered state-of-the-art knowledge from a number of experienced experts working in foundation engineering in tropical residual soils. Subjects covered are: geology and formation of residual soils, site investigations, characterization and selection of parameters for foundation design, design of shallow and deep foundations which include driven piles, drilled shafts and caissons, and special topics which include design of piles in marginally-stable river banks, micro piles, Augeo pile, pile load and NDT, foundation failures and remedial works, and pile supported embankment. The book also includes a country case study on engineering geology in relation to foundation engineering in Malaysia.




Journal


Book Description