Proceedings of the St. Petersburg Mathematical Society, Volume XIV


Book Description

Contains articles on analysis, probability, partial differential operators, frames, and other areas of mathematics. This volume also contains a comprehensive article about the classification of pseudo-regular convex polyhedra. It is suitable for a broad group of graduate students and researchers interested in the topics presented here.




Proceedings of the St. Petersburg Mathematical Society Volume IV


Book Description

The 11 papers are devoted to analysis, probability, and applications. The topics include the limit distribution of a homogeneous polynomial on the unit sphere of large dimensions, a survey of measures on abelian groups, the extension of analytic solutions of linear partial differential equations, asymptotics of the spectrum for two model problems in the theory of liquid vibrations, and countable analogues of pseudo-compact and Stone-Cech extensions. One offering is a biographical sketch of Julian Vasil'evich Sochotskii (1842-1927). No index. Member prices are $92 for institutions and $69 for individuals. Annotation copyrighted by Book News, Inc., Portland, OR.




Proceedings of the St. Petersburg Mathematical Society, Volume XV


Book Description

This book presents the proceedings of the international workshop, "Advances in Mathematical Analysis of Partial Differential Equations" held at the Institut Mittag-Leffler, Stockholm, Sweden, July 9-13, 2012, dedicated to the memory of the outstanding Russian mathematician Olga A. Ladyzhenskaya. The volume contains papers that engage a wide set of modern topics in the theory of linear and nonlinear partial differential equations and applications, including variational and free boundary problems, mathematical problems of hydrodynamics, and magneto-geostrophic equations.




Proceedings of the St. Petersburg Mathematical Society Volume V


Book Description

This volume contains 10 papers with new results on problems in mathematical physics, differential equations, and probability. Included also is an article on the dramatic history of mathematics in Leningrad in the 1930s.




Proceedings of the St. Petersburg Mathematical Society, Volume I


Book Description

This is the inaugural volume of a new book series published under the auspices of the St. Petersburg Mathematical Society. The book contains contributions by some of the leading mathematicians in St. Petersburg. Ranging over a wide array of topics, these papers testify to the diverse interests and productive mathematical life of the St. Petersburg Mathematical Society.




Spline and Spline Wavelet Methods with Applications to Signal and Image Processing


Book Description

This book presents various contributions of splines to signal and image processing from a unified perspective that is based on the Zak transform (ZT). It expands the methodology from periodic splines, which were presented in the first volume, to non-periodic splines. Together, these books provide a universal toolbox accompanied by MATLAB software for manipulating polynomial and discrete splines, spline-based wavelets, wavelet packets and wavelet frames for signal/ image processing applications. In this volume, we see that the ZT provides an integral representation of discrete and polynomial splines, which, to some extent, is similar to Fourier integral. The authors explore elements of spline theory and design, and consider different types of polynomial and discrete splines. They describe applications of spline-based wavelets to data compression. These splines are useful for real-time signal processing and, in particular, real-time wavelet and frame transforms. Further topics addressed in this volume include: "global" splines, such as interpolating, self-dual and smoothing, whose supports are infinite; the compactly supported quasi-interpolating and smoothing splines including quasi-interpolating splines on non-uniform grids; and cubic Hermite splines as a source for the design of multiwavelets and multiwavelet frames. Readers from various disciplines including engineering, computer science and mathematical information technology will find the descriptions of algorithms, applications and software in this book especially useful.




Proceedings of the St. Petersburg Mathematical Society, Volume VIII


Book Description

The articles in this collection present new results in partial differential equations, numerical analysis, probability theory, and geometry. The results, ideas, and methods given in the book will be of interest to a broad range of specialists.




Singularly Perturbed Boundary Value Problems


Book Description

This book is devoted to the analysis of the basic boundary value problems for the Laplace equation in singularly perturbed domains. The main purpose is to illustrate a method called Functional Analytic Approach, to describe the dependence of the solutions upon a singular perturbation parameter in terms of analytic functions. Here the focus is on domains with small holes and the perturbation parameter is the size of the holes. The book is the first introduction to the topic and covers the theoretical material and its applications to a series of problems that range from simple illustrative examples to more involved research results. The Functional Analytic Approach makes constant use of the integral representation method for the solutions of boundary value problems, of Potential Theory, of the Theory of Analytic Functions both in finite and infinite dimension, and of Nonlinear Functional Analysis. Designed to serve various purposes and readerships, the extensive introductory part spanning Chapters 1–7 can be used as a reference textbook for graduate courses on classical Potential Theory and its applications to boundary value problems. The early chapters also contain results that are rarely presented in the literature and may also, therefore, attract the interest of more expert readers. The exposition moves on to introduce the Functional Analytic Approach. A reader looking for a quick introduction to the method can find simple illustrative examples specifically designed for this purpose. More expert readers will find a comprehensive presentation of the Functional Analytic Approach, which allows a comparison between the approach of the book and the more classical expansion methods of Asymptotic Analysis and offers insights on the specific features of the approach and its applications to linear and nonlinear boundary value problems.




Proceedings of the St. Petersburg Mathematical Society Volume III


Book Description

Books in this series highlight some of the most interesting works presented at symposia sponsored by the St. Petersburg Mathematical Society. Aimed at researchers in number theory, field theory, and algebraic geometry, the present volume deals primarily with aspects of the theory of higher local fields and other types of complete discretely valuated fields. Most of the papers require background in local class field theory and algebraic $K$-theory; however, two of them, ``Unit Fractions'' and ``Collections of Multiple Sums'', would be accessible to undergraduates.







Recent Books