Structural Health Monitoring 2006


Book Description

These proceedings of the Third European Workshop on Structural Health Monitoring held at the Conference Centre in Granada, Spain, in July of 2006 includes four keynote presentations and 170 technical papers written by an international group of contributors. Papers discuss technology and activities related to damage detection and evaluation in engin




Maintenance, Safety, Risk, Management and Life-Cycle Performance of Bridges


Book Description

Maintenance, Safety, Risk, Management and Life-Cycle Performance of Bridges contains lectures and papers presented at the Ninth International Conference on Bridge Maintenance, Safety and Management (IABMAS 2018), held in Melbourne, Australia, 9-13 July 2018. This volume consists of a book of extended abstracts and a USB card containing the full papers of 393 contributions presented at IABMAS 2018, including the T.Y. Lin Lecture, 10 Keynote Lectures, and 382 technical papers from 40 countries. The contributions presented at IABMAS 2018 deal with the state of the art as well as emerging concepts and innovative applications related to the main aspects of bridge maintenance, safety, risk, management and life-cycle performance. Major topics include: new design methods, bridge codes, heavy vehicle and load models, bridge management systems, prediction of future traffic models, service life prediction, residual service life, sustainability and life-cycle assessments, maintenance strategies, bridge diagnostics, health monitoring, non-destructive testing, field testing, safety and serviceability, assessment and evaluation, damage identification, deterioration modelling, repair and retrofitting strategies, bridge reliability, fatigue and corrosion, extreme loads, advanced experimental simulations, and advanced computer simulations, among others. This volume provides both an up-to-date overview of the field of bridge engineering and significant contributions to the process of more rational decision-making on bridge maintenance, safety, risk, management and life-cycle performance of bridges for the purpose of enhancing the welfare of society. The Editors hope that these Proceedings will serve as a valuable reference to all concerned with bridge structure and infrastructure systems, including students, researchers and engineers from all areas of bridge engineering.




Intelligent Materials and Structures


Book Description

Intelligent Materials and Structures provides exceptional insights into designing intelligent materials and structures for special applications in engineering. The author introduces the fundamental materials science involved in research endeavors and simultaneously reviews the current state-of-the-art of intelligent materials and structures. Separate chapters are devoted to the thorough examination of theory and application of laminated composite materials, Piezoelectricity, Shape Memory Alloys, Electro- and Magnetorheological fluids as well as Magneto- and Electrostrictive materials. Each chapter contains numerous equations and figures describing theories, models and behavior of the intelligent material discussed. Special attention is paid to applications of intelligent materials to various structures in the aerospace and medical sector, piezoelectric motors as well as piezoelectric and electromagnetic energy harvesting. Contents: Introduction to Intelligent Materials and Structures Laminated Composite Materials Piezoelectricity Shape Memory Alloys Electrorheological and Magnetorheological Fluids Magnetostrictive and Electrostrictive Materials Applications of Intelligent Materials in Structures Energy Harvesting using Intelligent Materials Index




High-performance Construction Materials


Book Description

This book describes a number of high-performance construction materials, including concrete, steel, fiber-reinforced cement, fiber-reinforced plastics, polymeric materials, geosynthetics, masonry materials and coatings. It discusses the scientific bases for the manufacture and use of these high-performance materials. Testing and application examples are also included, in particular the application of relatively new high-performance construction materials to design practice.Most books dealing with construction materials typically address traditional materials only rather than high-performance materials and, as a consequence, do not satisfy the increasing demands of today''s society. On the other hand, books dealing with materials science are not engineering-oriented, with limited coverage of the application to engineering practice. This book is thus unique in reflecting the great advances made on high-performance construction materials in recent years.This book is appropriate for use as a textbook for courses in engineering materials, structural materials and civil engineering materials at the senior undergraduate and graduate levels. It is also suitable for use by practice engineers, including construction, materials, mechanical and civil engineers.




Modern Earthquake Engineering


Book Description

This book addresses applications of earthquake engineering for both offshore and land-based structures. It is self-contained as a reference work and covers a wide range of topics, including topics related to engineering seismology, geotechnical earthquake engineering, structural engineering, as well as special contents dedicated to design philosophy, determination of ground motions, shock waves, tsunamis, earthquake damage, seismic response of offshore and arctic structures, spatial varied ground motions, simplified and advanced seismic analysis methods, sudden subsidence of offshore platforms, tank liquid impacts during earthquakes, seismic resistance of non-structural elements, and various types of mitigation measures, etc. The target readership includes professionals in offshore and civil engineering, officials and regulators, as well as researchers and students in this field.




Life-Cycle of Engineering Systems: Emphasis on Sustainable Civil Infrastructure


Book Description

This volume contains the papers presented at IALCCE2016, the fifth International Symposium on Life-Cycle Civil Engineering (IALCCE2016), to be held in Delft, The Netherlands, October 16-19, 2016. It consists of a book of extended abstracts and a DVD with full papers including the Fazlur R. Khan lecture, keynote lectures, and technical papers from all over the world. All major aspects of life-cycle engineering are addressed, with special focus on structural damage processes, life-cycle design, inspection, monitoring, assessment, maintenance and rehabilitation, life-cycle cost of structures and infrastructures, life-cycle performance of special structures, and life-cycle oriented computational tools. The aim of the editors is to provide a valuable source for anyone interested in life-cycle of civil infrastructure systems, including students, researchers and practitioners from all areas of engineering and industry.




IUTAM Symposium on Vibration Control of Nonlinear Mechanisms and Structures


Book Description

During the last decades, the growth of micro-electronics has reduced the cost of computing power to a level acceptable to industry and has made possible sophisticated control strategies suitable for many applications. Vibration c- trol is applied to all kinds of engineering systems to obtain the desired dynamic behavior, improved accuracy and increased reliability during operation. In this context, one can think of applications related to the control of structures’ vib- tion isolation, control of vehicle dynamics, noise control, control of machines and mechanisms and control of ?uid-structure-interaction. One could continue with this list for a long time. Research in the ?eld of vibration control is extremely comprehensive. Pr- lems that are typical for vibration control of nonlinear mechanisms and str- tures arise in the ?elds of modeling systems in such a way that the model is suitable for control design, to choose appropriate actuator and sensor locations and to select the actuators and sensors. Theobjective of the Symposium was to present anddiscuss methodsthat contribute to thesolution of such problems and to demonstrate the state of the art inthe ?eld shown by typical examples. The intention was to evaluate the limits of performance that can beachievedby controlling the dynamics, and to point out gaps in present research and give links for areas offuture research.Mainly, it brought together leading experts from quite different areas presenting theirpoints of view.




Michell Structures


Book Description

The book covers the theory of Michell structures being the lightest and fully stressed systems of bars, designed within a given domain, possibly within the whole space, transmitting a given load towards a given support. Discovered already in 1904 by A.G.M. Michell, the structures named after him have attracted constant attention due to their peculiar feature of disclosing the optimal streams of stresses equilibrating a given load and thus determining the optimal layout of bars. The optimal layouts emerge from among all possible structural topologies, thus constituting unique designs being simultaneously light and stiff. The optimal structures turn out to be embedded in optimal vector fields covering the whole feasible domain. Key features include: a variationally consistent theory of bar systems, thin plates in bending and membrane shells; recapitulation of the theory of optimum design of trusses of minimum weight or of minimal compliance; the basis of 2D Michell theory for a single load case; kinematic and static approaches; 2D benchmark constructions including Hemp’s structures and optimal cantilevers; L-shape domain problems, three forces problem in 2D, bridge problems; revisiting the old - and delivering new - 3D benchmark solutions; extension to multiple load conditions; Prager-Rozvany grillages; the theory of funiculars and archgrids; the methods of optimum design of shape and material inspired by the theory of Michell structures, industrial applications. The book can be useful for graduate students, professional engineers and researchers specializing in the Optimum Design and in Topology Optimization in general.




Topics in Modal Analysis & Testing, Volume 10


Book Description

Topics in Modal Analysis & Testing, Volume 10. Proceedings of the 34th IMAC, A Conference and Exposition on Dynamics of Multiphysical Systems: From Active Materials to Vibroacoustics, 2016, the tenth volume of ten from the Conference brings together contributions to this important area of research and engineering. The collection presents early findings and case studies on fundamental and applied aspects of Structural Dynamics, including papers on: • Modal Analysis, Measurements & Parameter Estimation • Basics of Modal Analysis • Additive Manufacturing & Modal Testing of Printed Parts • Modal Analysis & Model Updating • Modal Testing Methods