Friction Stir Welding of 2XXX Aluminum Alloys including Al-Li Alloys


Book Description

Friction Stir Processing of 2XXX Aluminum Alloys including Al-Li Alloys is the latest edition in the Friction Stir Welding and Processing series and examines the application of friction stir welding to high strength 2XXX series alloys, exploring the past and current developments in the field. The book features recent research showing significant benefit in terms of joint efficiency and fatigue performance as a result of friction stir welding. Friction stir welding has demonstrated significant benefits in terms of its potential to reduce cost and increase manufacturing efficiency of industrial products including transportation, particularly the aerospace sector. The 2XXX series aluminum alloys are the premium aluminum alloys used in aerospace. The book includes discussion of the potential future directions for further optimization, and is designed for both practicing engineers and materials scientists, as well as researchers in the field. - Provides comprehensive coverage of friction stir welding of 2XXX series alloys - Discusses the physical metallurgy of the alloys - Includes physical metallurgy-based guidelines for obtaining high joint efficiency - Features illustrated examples of the application of FSW in the aerospace industry




Metallurgy and Design of Alloys with Hierarchical Microstructures


Book Description

Metallurgy and Design of Alloys with Hierarchical Microstructures covers the fundamentals of processing-microstructure-property relationships and how multiple properties are balanced and optimized in materials with hierarchical microstructures widely used in critical applications. The discussion is based principally on metallic materials used in aircraft structures; however, because they have sufficiently diverse microstructures, the underlying principles can easily be extended to other materials systems. With the increasing microstructural complexity of structural materials, it is important for students, academic researchers and practicing engineers to possess the knowledge of how materials are optimized and how they will behave in service. The book integrates aspects of computational materials science, physical metallurgy, alloy design, process design, and structure-properties relationships, in a manner not done before. It fills a knowledge gap in the interrelationships of multiple microstructural and deformation mechanisms by applying the concepts and tools of designing microstructures for achieving combinations of engineering properties—such as strength, corrosion resistance, durability and damage tolerance in multi-component materials—used for critical structural applications. - Discusses the science behind the properties and performance of advanced metallic materials - Provides for the efficient design of materials and processes to satisfy targeted performance in materials and structures - Enables the selection and development of new alloys for specific applications based upon evaluation of their microstructure as illustrated in this work




Additive Friction Stir Deposition


Book Description

Additive Friction Stir Deposition is a comprehensive summary of the state-of-the-art understanding on this emerging solid-state additive manufacturing technology. Sections cover additive friction stir deposition, encompassing advances in processing science, metallurgical science and innovative applications. The book presents a clear description of underlying physical phenomena, shows how the process determines the printing quality, covers resultant microstructure and properties in the as-printed state, highlights its key capabilities and limitations, and explores niche applications in repair, cladding and multi-material 3D printing. Serving as an educational and research guide, this book aims to provide a holistic picture of additive friction stir deposition-based solid-state additive manufacturing as well as a thorough comparison to conventional beam-based metal additive manufacturing, such as powder bed fusion and directed energy deposition. - Provides a clear process description of additive friction stir deposition and highlights key capabilities - Summarizes the current research and application of additive friction stir deposition, including material flow, microstructure evolution, repair and dissimilar material cladding - Discusses future applications and areas of research for this technology




Strengthening and Joining by Plastic Deformation


Book Description

This book focuses on strengthening and joining materials by means of plastic deformation, gathering extended research papers presented at the AIMTDR 2016 conference. Plastic deformation is used in materials processing to improve the strength of the material. For example, the rod/screw used to connect the cooker handle to the main body has to be strong and sustainable; such rods can be strengthened by plastic deformation (using multi-stage forming operations etc.). Similarly, joining by means of plastic deformation is highly valuable since it avoids the material and environmental degradation often caused by fusion welding processes. The book discusses various processing techniques in which plastic deformation is used to strengthen materials – e.g. in equal channel angular extrusion, autofrettage etc., or to join materials without melting them – e.g. in friction stir processing, riveting etc. Offering an extensive guide, the book includes chapters on roll bonding, equal channel angular pressing, autofrettage, friction stir processing/welding, magnetic pulse welding, and riveting – processes used to strengthen and join a variety of materials for lightweight applications and sustainable manufacturing. The contents of this book will be useful to researchers and practitioners alike.




Friction Stir Welding of Aluminium Alloys


Book Description

Friction Stir Welding (FSW) is known to result in a complex microstructural development, with features that remain unexplained, such as: the formation of the onion rings structure. Moreover, various microstructural factors have been suggested to control the strength in Al-Mg AA5xxx welds, without identifying their relative contribution. Furthermore, the influence of the basemetal microstructural parameters (e.g. grains, intermetallic particles, stored energy) on the microstructure-property development has not been previously investigated. These issues are addressed in the present study.




Handbook of Aluminum


Book Description

The Handbook of Aluminum: Vol. 1: Physical Metallurgy and Processes covers all aspects of the physical metallurgy, analytical techniques, and processing of aluminium, including hardening, annealing, aging, property prediction, corrosion, residual stress and distortion, welding, casting, forging, molten metal processing, machining, rolling, and extrusion. It also features an extensive, chapter-length consideration of quenching.




Weldability of High-strength Aluminum Alloys


Book Description

This memorandum describes the fusion-welding characteristics, mechanical properties, and stress-corrosion behavior of high-strength, weldable aluminum alloys. These are defined as alloys in which sound welds can be produced and in which at least 50 and 70 percent of the maximum base-metal strength can be retained in the as-welded and post-weld-treated conditions, respectively. Careful selection of joining method and filler metals as well as close control of joining-process parameters is necessary to produce high-strength aluminum weldments. Highest strengths and weld-joint efficiencies in high-strength weldable alloys are achieved with the use of postweld aging and/or mechanical treatments. The best combination of highest strengths and good welding characteristics is found in the 2000 and 7000 alloy series. As compared with the 2000 and 5000 alloy series, the 7000 alloy as a class suffer three major property disadvantages: (1) their tendency to be notch sensitive, (2) their tendency to exhibit low toughness at low temperatures, and (3) their much greater susceptibility to stress-corrosion cracking. Nonetheless, several relatively new 7000 series alloys have been developed which show reasonably good notch toughness to -423 F and which are considered competitive with the 2219 and 2014 alloys for cryogenic applications. (Author).




Friction Stir Welding and Processing


Book Description

This book lays out the fundamentals of friction stir welding and processing and builds toward practical perspectives. The authors describe the links between the thermo-mechanical aspects and the microstructural evolution and use of these for the development of the friction stir process as a broader metallurgical tool for microstructural modification and manufacturing. The fundamentals behind the practical aspects of tool design, process parameter selection and weld related defects are discussed. Local microstructural refinement has enabled new concepts of superplastic forming and enhanced low temperature forming. The collection of friction stir based technologies is a versatile set of solid state manufacturing tools.




Advances in Friction-Stir Welding and Processing


Book Description

Friction-stir welding (FSW) is a solid-state joining process primarily used on aluminum, and is also widely used for joining dissimilar metals such as aluminum, magnesium, copper and ferrous alloys. Recently, a friction-stir processing (FSP) technique based on FSW has been used for microstructural modifications, the homogenized and refined microstructure along with the reduced porosity resulting in improved mechanical properties. Advances in friction-stir welding and processing deals with the processes involved in different metals and polymers, including their microstructural and mechanical properties, wear and corrosion behavior, heat flow, and simulation. The book is structured into ten chapters, covering applications of the technology; tool and welding design; material and heat flow; microstructural evolution; mechanical properties; corrosion behavior and wear properties. Later chapters cover mechanical alloying and FSP as a welding and casting repair technique; optimization and simulation of artificial neural networks; and FSW and FSP of polymers. - Provides studies of the microstructural, mechanical, corrosion and wear properties of friction-stir welded and processed materials - Considers heat generation, heat flow and material flow - Covers simulation of FSW/FSP and use of artificial neural network in FSW/FSP




Residual Stresses in Friction Stir Welding


Book Description

This book describes the fundamentals of residual stresses in friction stir welding and reviews the data reported for various materials. Residual stresses produced during manufacturing processes lead to distortion of structures. It is critical to understand and mitigate residual stresses. From the onset of friction stir welding, claims have been made about the lower magnitude of residual stresses. The lower residual stresses are partly due to lower peak temperature and shorter time at temperature during friction stir welding. A review of residual stresses that result from the friction stir process and strategies to mitigate it have been presented. Friction stir welding can be combined with additional in-situ and ex-situ manufacturing steps to lower the final residual stresses. Modeling of residual stresses highlights the relationship between clamping constraint and development of distortion. For many applications, management of residual stresses can be critical for qualification of component/structure. - Reviews magnitude of residual stresses in various metals and alloys - Discusses mitigation strategies for residual stresses during friction stir welding - Covers fundamental origin of residual stresses and distortion