Processing and Managing Complex Data for Decision Support


Book Description

"This book provides an overall view of the emerging field of complex data processing, highlighting the similarities between the different data, issues and approaches"--Provided by publisher.




Research Anthology on Decision Support Systems and Decision Management in Healthcare, Business, and Engineering


Book Description

Decision support systems (DSS) are widely touted for their effectiveness in aiding decision making, particularly across a wide and diverse range of industries including healthcare, business, and engineering applications. The concepts, principles, and theories of enhanced decision making are essential points of research as well as the exact methods, tools, and technologies being implemented in these industries. From both a standpoint of DSS interfaces, namely the design and development of these technologies, along with the implementations, including experiences and utilization of these tools, one can get a better sense of how exactly DSS has changed the face of decision making and management in multi-industry applications. Furthermore, the evaluation of the impact of these technologies is essential in moving forward in the future. The Research Anthology on Decision Support Systems and Decision Management in Healthcare, Business, and Engineering explores how decision support systems have been developed and implemented across diverse industries through perspectives on the technology, the utilizations of these tools, and from a decision management standpoint. The chapters will cover not only the interfaces, implementations, and functionality of these tools, but also the overall impacts they have had on the specific industries mentioned. This book also evaluates the effectiveness along with benefits and challenges of using DSS as well as the outlook for the future. This book is ideal for decision makers, IT consultants and specialists, software developers, design professionals, academicians, policymakers, researchers, professionals, and students interested in how DSS is being used in different industries.




DAMA-DMBOK


Book Description

Defining a set of guiding principles for data management and describing how these principles can be applied within data management functional areas; Providing a functional framework for the implementation of enterprise data management practices; including widely adopted practices, methods and techniques, functions, roles, deliverables and metrics; Establishing a common vocabulary for data management concepts and serving as the basis for best practices for data management professionals. DAMA-DMBOK2 provides data management and IT professionals, executives, knowledge workers, educators, and researchers with a framework to manage their data and mature their information infrastructure, based on these principles: Data is an asset with unique properties; The value of data can be and should be expressed in economic terms; Managing data means managing the quality of data; It takes metadata to manage data; It takes planning to manage data; Data management is cross-functional and requires a range of skills and expertise; Data management requires an enterprise perspective; Data management must account for a range of perspectives; Data management is data lifecycle management; Different types of data have different lifecycle requirements; Managing data includes managing risks associated with data; Data management requirements must drive information technology decisions; Effective data management requires leadership commitment.




Decision Science and Technology


Book Description

Decision Science and Technology is a compilation of chapters written in honor of a remarkable man, Ward Edwards. Among Ward's many contributions are two significant accomplishments, either of which would have been enough for a very distinguished career. First, Ward is the founder of behavioral decision theory. This interdisciplinary discipline addresses the question of how people actually confront decisions, as opposed to the question of how they should make decisions. Second, Ward laid the groundwork for sound normative systems by noticing which tasks humans can do well and which tasks computers should perform. This volume, organized into five parts, reflects those accomplishments and more. The book is divided into four sections: `Behavioral Decision Theory' examines theoretical descriptions and empirical findings about human decision making. `Decision Analysis' examines topics in decision analysis.`Decision in Society' explores issues in societal decision making. The final section, `Historical Notes', provides some historical perspectives on the development of the decision theory. Within these sections, major, multi-disciplinary scholars in decision theory have written chapters exploring some very bold themes in the field, as an examination of the book's contents will show. The main reason for the health of the Decision Analysis field is its close links between theory and applications that have characterized it over the years. In this volume, the chapters by Barron and Barrett; Fishburn; Fryback; Keeney; Moreno, Pericchi, and Kadane; Howard; Phillips; Slovic and Gregory; Winkler; and, above all, von Winterfeldt focus on those links. Decision science originally developed out of concern with real decision problems; and applied work, such as is represented in this volume, will help the field to remain strong.




Business Statistics for Contemporary Decision Making


Book Description

Show students why business statistics is an increasingly important business skill through a student-friendly pedagogy. In this fourth Canadian edition of Business Statistics For Contemporary Decision Making authors Ken Black, Tiffany Bayley, and Ignacio Castillo uses current real-world data to equip students with the business analytics techniques and quantitative decision-making skills required to make smart decisions in today's workplace.




Knowledge Management in the Development of Data-Intensive Systems


Book Description

Data-intensive systems are software applications that process and generate Big Data. Data-intensive systems support the use of large amounts of data strategically and efficiently to provide intelligence. For example, examining industrial sensor data or business process data can enhance production, guide proactive improvements of development processes, or optimize supply chain systems. Designing data-intensive software systems is difficult because distribution of knowledge across stakeholders creates a symmetry of ignorance, because a shared vision of the future requires the development of new knowledge that extends and synthesizes existing knowledge. Knowledge Management in the Development of Data-Intensive Systems addresses new challenges arising from knowledge management in the development of data-intensive software systems. These challenges concern requirements, architectural design, detailed design, implementation and maintenance. The book covers the current state and future directions of knowledge management in development of data-intensive software systems. The book features both academic and industrial contributions which discuss the role software engineering can play for addressing challenges that confront developing, maintaining and evolving systems;data-intensive software systems of cloud and mobile services; and the scalability requirements they imply. The book features software engineering approaches that can efficiently deal with data-intensive systems as well as applications and use cases benefiting from data-intensive systems. Providing a comprehensive reference on the notion of data-intensive systems from a technical and non-technical perspective, the book focuses uniquely on software engineering and knowledge management in the design and maintenance of data-intensive systems. The book covers constructing, deploying, and maintaining high quality software products and software engineering in and for dynamic and flexible environments. This book provides a holistic guide for those who need to understand the impact of variability on all aspects of the software life cycle. It leverages practical experience and evidence to look ahead at the challenges faced by organizations in a fast-moving world with increasingly fast-changing customer requirements and expectations.




Customer Relationship Management: A Step


Book Description

This book succinctly explains the cardinal principles of effective customer relationship management (CRM) –acquiring, retaining and expanding customer base. The concepts, process, techniques, significance and architectural aspects of CRM are dealt in comprehensive manner. The book would serve as a useful source of reference for designing, developing and implementing CRM in any organization.




Data Warehousing Design and Advanced Engineering Applications: Methods for Complex Construction


Book Description

Data warehousing and online analysis technologies have shown their effectiveness in managing and analyzing a large amount of disparate data, attracting much attention from numerous research communities. Data Warehousing Design and Advanced Engineering Applications: Methods for Complex Construction covers the complete process of analyzing data to extract, transform, load, and manage the essential components of a data warehousing system. A defining collection of field discoveries, this advanced title provides significant industry solutions for those involved in this distinct research community.




Spatial Decision Support Systems


Book Description

This book provides a comprehensive examination of the various aspects of SDSS evolution, components, architecture, and implementation. Integrating research from a variety of disciplines, it supplies a complete overview of SDSS technologies and their application. This groundbreaking reference provides thorough coverage of the roots of SDSS. It explains the core principles of SDSS, how to use them in various decision making contexts, and how to design and develop them using readily available enabling technologies and commercial tools.




Making Better Decisions Using IBM WebSphere Operational Decision Management


Book Description

Decision management is emerging as an important capability for delivering agile business solutions. Decision management is not a solution in its own right, but must be integrated into the solutions or business processes that it supports. In this IBM® RedpapersTM publication, we describe the recommended best practices and integration concepts that use the business events, business rules, and other capabilities of IBM WebSphere® Operational Decision Management V7.5 (WebSphere ODM) to provide better decision making in those solutions and business processes.