Book Description
Phased array antennas and doppler signal processors designed to complement each other have been successfully used to maximize the signal-to-clutter (S/C) performance of AMTI radars. The optimum receiving antennas described in this paper allow for nonuniformities created in the ground-clutter doppler spectrum by the transmitting antenna and processing of the received doppler signal; the optimum signal-to-clutter digital processors allow for clutter spectra shaped by the combined effects of the transmitting-receiving antennas. The emphasis has been placed on producing antenna-processor designs that have complementary pass and reject bands. The mathematical techniques used in these designs maximize the ratio between the target signal and the clutter-plus-noise, expressed as a ratio of quadratic forms. The solution for the optimum design, which depends principally on the inversion of a single matrix rather than on any recursive technique, is obtained in closed form.